• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Resource Assessment In Aydin-pamukoren Geothermal Field

Atmaca, Ilker 01 May 2010 (has links) (PDF)
Reasons like increases in the price and demand of energy in the last years, growing interest and support in the renewable energy resources, development of social environmental consciousness, interest in using domestic resources, having legal regulations has promoted the interest in the electricity production from geothermal energy. For the effective and productive use of existing resources, important data of geothermal regions are obtained with well tests. Well tests are the studies which starts while the well is drilling, continues after the well completion during the process of operation planning with optimum performance suitable to geothermal source and presents continuation also in the operation stage as required for the dynamic structure of geothermal systems. In Aydin Kuyucak Pamuk&ouml / ren region three wells are drilled, achieved results are positive. At AP1 well only CO2 emission is present, no test is done for this well. With the tests for AP2 and AP3 wells temperature, pressure and production values are determined. By the results of these tests, it is determined that this region will be one of the important fields in the West Anatolian Region with current temperature and production rate. In this study, the geothermal energy recoverable from this region is calculated with volume method of geothermal resource assessment. Monte Carlo simulation technique is used with an add-in software program @RISK to Microsoft EXCEL. Electrical power capacity of Aydin-Pamuk&ouml / ren geothermal field is determined as 45.2 MW with 90 % probability. The most likely electrical power value was found to be 78.75 MW with a probability of 69 %. The number of wells required are 10 for a production capacity of 200 t/hr and 7 for a production capacity of 300 t/hr at each well head.
2

Ein Beitrag zur Untersuchung des Verhaltens dünner Flüssigkeitsfilme nahe gekrümmten Substratoberflächen

Sommer, Oliver 17 October 2014 (has links)
In der vorliegenden Arbeit wurde das Verhalten dünner Flüssigkeitsfilme an gekrümmten Substratoberflächen durch experimentelle Beschichtungsversuche basierend auf der non-invasiven laserinduzierten Fluoreszenzmesstechnik und durch numerische Filmsimulationen mit Hilfe des Volume-of-Fluid Mehrphasenmodells untersucht. Besonderes Interesse galt dabei dem Finden optimaler Einflussgrößenkombinationen zur Reduzierung des Fettkanten-Effekts. In der hierfür durchgeführten Parameterstudie wurden sowohl Applikationsparameter wie der Kantenrundungsradius und die Applikationsschichtdicke als auch Stoffparameter der untersuchten Flüssigkeit wie die Viskosität und die Oberflächenspannung variiert. Neben qualitativen Beschreibungen der entstandenen Fettkantengestalten sind als Resultate auch Größen zur Quantifizierung der Fettkanten festgelegt worden und systematisch dargestellt. Es konnte nachgewiesen werden, dass ungünstige und geeignete Parameterkonfigurationen existieren, welche prägnante bzw. kaum auffällige Fettkanten erzeugen, insbesondere im Experiment. Über die dabei eingreifenden Mechanismen der zugrundeliegenden Strömungen wurden konkrete Hypothesen aufgestellt, auch um die resultierenden Proportionalitäten der Fettkantengrößen bezüglich der Einflussgrößen zu plausibilisieren. Weiterhin konnte eine Aussage über die Signifikanz der untersuchten Einflussgrößen getroffen werden. Abschließend wurde eine geeignete dimensionslose Kenngröße generiert, um den Fettkanten-Effekt parameterübergreifend beschreiben zu können, wodurch mittels der Ähnlichkeitstheorie auch eine gewisse Abschätzung des Fettkanten-Effekts ermöglicht wird. / In this study the behaviour of a thin liquid layer at a curved solid edge was examined by experimental coating investigations based on the laser-induced fluorescence technique and by numerical film simulations based on the Volume-of-Fluid multiphase flow model, respectively. The main motivation was to find optimal combinations of influencing quantities to reduce the fat-edge effect. Therefore a study of these quantities was performed, in which application parameters like edge radii of curvature and application layer thicknesses as well as determining liquid properties like viscosity and surface tension have been varied. Results are described qualitatively at corresponding fat-edge shapes and quantified by suitable fat-edge parameters, which had to be identified and selected. It could be shown that adverse and appropriate influencing parameter combinations exist, which generate conspicuous and less distinctive fat-edges, respectively - especially in laboratory experiments. The experimental findings and proportionalities regarding fat-edge shapes and dimensions are found to be physically plausible. Furthermore an order of significance of the influencing quantities established. Eventually, a dimensionless quantity was derived by dimensional analysis, which describes the fat-edge effect. Thus, the fat-edge effect has also been described by the application of similarity theory and the corresponding dimenionless number, respectively.
3

MODELING FATIGUE BEHAVIOR OF ADDITIVELY MANUFACTURED NI-BASED SUPERALLOYS VIA CRYSTAL PLASTICITY

Veerappan Prithivirajan (8464098) 17 April 2020 (has links)
Additive manufacturing (AM) introduces high variability in the microstructure and defect distributions, compared with conventional processing techniques, which introduces greater uncertainty in the resulting fatigue performance of manufactured parts. As a result, qualification of AM parts poses as a problem in continued adoption of these materials in safety-critical components for the aerospace industry. Hence, there is a need to develop precise and accurate, physics-based predictive models to quantify the fatigue performance, as a means to accelerate the qualification of AM parts. The fatigue performance is a critical requirement in the safe-life design philosophy used in the aerospace industry. Fatigue failure is governed by the loading conditions and the attributes of the material microstructure, namely, grain size distribution, texture, and defects. In this work, the crystal plasticity finite element (CPFE) method is employed to model the microstructure-based material response of an additively manufactured Ni-based superalloy, Inconel 718 (IN718). Using CPFE and associated experiments, methodologies were developed to assess multiple aspects of the fatigue behavior of IN718 using four studies. In the first study, a CPFE framework is developed to estimate the critical characteristics of porosity, namely the pore size and proximity that would cause a significant debit in the fatigue life. The second study is performed to evaluate multiple metrics based on plastic strain and local stress in their ability to predict both the modes of failure as seen in fractography experiments and estimate the scatter in fatigue life due to microstructural variability as obtained from fatigue testing. In the third study, a systematic analysis was performed to investigate the role of the simulation volume and the microstructural constraints on the fatigue life predictions to provide informed guidelines for simulation volume selection that is both computationally tractable and results in consistent scatter predictions. In the fourth study, validation of the CPFE results with the experiments were performed to build confidence in the model predictions. To this end, 3D realistic microstructures representative of the test specimen were created based on the multi-modal experimental data obtained from high-energy diffraction experiments and electron backscatter diffraction microscopy. Following this, the location of failure is predicted using the model, which resulted in an unambiguous one to one correlation with the experiment. In summary, the development of microstructure-sensitive predictive methods for fatigue assessment presents a tangible step towards the adoption of model-based approaches that can be used to compliment and reduce the overall number of physical tests necessary to qualify a material for use in application.

Page generated in 0.068 seconds