• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 439
  • 312
  • 159
  • 14
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 9
  • 6
  • 3
  • 3
  • 3
  • Tagged with
  • 1105
  • 1105
  • 326
  • 324
  • 310
  • 241
  • 214
  • 160
  • 154
  • 148
  • 143
  • 120
  • 106
  • 102
  • 91
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Simulation of non-Newtonian fluids on workstation clusters

Barth, William L. 28 August 2008 (has links)
Not available / text
132

Simulation of solar heating and cooling systems, using the continuous system modeling program

Ho, Tho Ching. January 1978 (has links)
Call number: LD2668 .T4 1978 H6 / Master of Science
133

An environmental parameters descriptor

Robbins, Claude Lee. January 1978 (has links)
Call number: LD2668 .T4 1978 R62 / Master of Regional and Community Planning
134

Simulation Of Groundwater Flow In The Rincon Valley Area And Mesilla Basin, New Mexico And Texas

Weeden, A. Curtis,Jr., Maddock, Thomas, III 30 September 1999 (has links)
A groundwater flow model was constructed for the Rincon Valley area and Mesilla Basin. The system is dominated by the complex interaction of the Rio Grande, canals, laterals, and drains with groundwater pumping. The primary purpose of the model was to aid the New Mexico -Texas Water Commission in assessing options for water resources development in the Lower Rio Grand Basin from Caballo Reservoir in New Mexico to El Paso, Texas. One such assessment was to evaluate the effect of secondary irrigation releases from Caballo Reservoir on the water budget. In addition, the model will eventually be linked to a surface water model (BESTSM) being utilized by the New Mexico -Texas Water Commission to evaluate water supply alternatives for El Paso, Texas. Stress periods were specified on a seasonal basis, a primary irrigation season from March through October and a secondary irrigation season from November through February. Analysis of model output indicates that groundwater pumping decreases Rio Grande flows, secondary irrigation season releases do not alter the water budget significantly, and that recharge and discharge from aquifer storage are strongly related to the season.
135

A decision methodology for the resource utilization of rangeland watersheds

Khalili, Davar,1955- January 1986 (has links)
Degradation of rangeland resources leading to the desertification process is viewed in terms of human and climatic influences. While climatic impacts are important, resource utilization as practiced by man is the major cause of desertification. A multi-objective .decision methodology is developed here which is intended for the analysis of alternative management plans of rangeland watersheds under climatic variability. First, a system model is employed to portray the dynamics of a rangeland as it would respond to climatic changes and different grazing intensities. This approach allows for an interaction of inputs such as rainfall, solar radiation, and temperature with the state of the system which is a range condition index, and with outputs such as production and sediment yield. A simulation package is developed to implement the system model by actually using available data and providing some output values for production and sediment yield. At this stage a number of alternative management plans are identified. The information obtained from the simulation as well as other information of interest are represented by performance criteria, leading to an array of alternative versus criteria. Then, management plans need to be evaluated as they would impact the criteria. A multiobjective decision making technique is selected to perform the analysis for an identification of prefered management alternatives.
136

Simulation modelling of sugarcane harvest-to-crush delays.

January 1998 (has links)
Long delays between harvesting and crushing of sugarcane lead to excessive deterioration in the quality of sugarcane. The aim of this project was to develop a computer based model of sugarcane harvesting and delivery systems that could be used to investigate methods of reducing harvest-to crush delays. A literature review was conducted and simulation modelling was chosen as the most appropriate modelling technique for the situation of sugarcane harvesting and delivery and the purposes of this project. The Arena modelling system was chosen as the simulation software with which to construct the model. A model was developed on the scale of a particular sugar mill and the area of farms supplying it with cane. The Sezela mill on the south coast of KwaZulu-Natal, South Africa was chosen as a case study on which to develop and test the model. The model integrated a harvesting and transport section which represented all the individual farms or combinations of farms in the area with a millyard section. After the model had been verified and validated, it was used to investigate the effect of a number of different scenarios of harvesting and delivery systems and schedules on harvest-to-crush delays in the Sezela mill area. The results of the experimental runs performed with the model indicated that the most significant decreases in harvest-to-crush delays could be brought about by matching harvesting, delivery and milling cycles as closely as possible. It was also evident that burn-to-cut delays where daily burning is not practised constitute a large proportion of overall harvest-to crush delays. The model proved to be useful in making comparisons between systems and in providing a holistic view of the problem of harvest-to-crush delays. Recommendations for future developments of the model include adding a mechanical harvesting component and making the model more easily applicable to other mill areas. / Thesis (M.Sc.Eng.)-University of Natal, 1998.
137

Wastewater treatment in soil: effect of residence time

Magette, William L. January 1982 (has links)
A laboratory study was conducted to determine nitrogen removal rates from a land-applied wastewater as a function of the length of time the wastewater remained in the root zone. A digital simulation model was used as an aid in describing soil water (and wastewater) movement through the root zone under wet conditions (i.e. root zone 50- 75% saturated). A procedure was developed to predict the rate and volume of drainage as a function of initial soil moisture content, amount of liquid applied, and time after liquid application. An exact relationship between nitrogen removals and wastewater residence time in the root zone could not be developed. However, removals of up to 95% of applied NH₄-N were demonstrated in an 18-cm deep root zone with residence times as short as 2 hours. The exact nature of these removals was not determined. / Ph. D.
138

Development and testing of a crop-dependent evapotranspiration function in the Kansas watershed model

Nawaz, Ahmad January 2011 (has links)
Digitized by Kansas Correctional Industries
139

A production scheduling simulator

Nanda, Haripada January 2011 (has links)
Digitized by Kansas State University Libraries
140

Analog computer study of a biological temperature regulator : cutaneous circulation

Moore, Alan Arthur January 2011 (has links)
Digitized by Kansas State University Libraries

Page generated in 0.0915 seconds