• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Designing a dynamic thermal and energy system simulation scheme for cross industry applications / W. Bouwer

Bouwer, Werner January 2004 (has links)
The South African economy, which is largely based on heavy industry such as minerals extraction and processing, is by nature very energy intensive. Based on the abundance of coal resources, electricity in South Africa remains amongst the cheapest in the world. Whilst the low electricity price has contributed towards a competitive position, it has also meant that our existing electricity supply is often taken for granted. The economic and environmental benefits of energy efficiency have been well documented. Worldwide, nations are beginning to face up to the challenge of sustainable energy - in other words to alter the way that energy is utilised so that social, environmental and economic aims of sustainable development are supported. South Africa as a developing nation recognises the need for energy efficiency, as it is the most cost effective way of meeting the demands of sustainable development. South Africa, with its unique economic, environmental and social challenges, stands to benefit the most from implementing energy efficiency practices. The Energy Efficiency Strategy for South Africa takes its mandate from the South African White Paper on Energy Policy. It is the first consolidated governmental effort geared towards energy efficiency practices throughout South Africa. The strategy allows for the immediate implementation of low-cost and no-cost interventions, as well as those higher-cost measures with short payback periods. An initial target has been set for an across sector energy efficiency improvement of 12% by 2014. Thermal and energy system simulation is globally recognised as one of the most effective and powerful tools to improve overall energy efficiency. However, because of the usual extreme mathematical nature of most simulation algorithms, coupled with the historically academic environment in which most simulation software is developed, valid perceptions exist that system simulation is too time consuming and cumbersome. It is also commonly known that system simulation is only effective in the hands of highly skilled operators, which are specialists in their prospective fields. Through previous work done in the field, and the design of a dynamic thermal and energy system simulation scheme for cross industry applications, it was shown that system simulation has evolved to such an extent that these perceptions are not valid any more. The South African mining and commercial building industries are two of the major consumers of electricity within South Africa. By improving energy efficiency practices within the building and mining industry, large savings can be realised. An extensive investigation of the literature showed that no general suitable computer simulation software for cross industry mining and building thermal and energy system simulation could be found. Because the heating, ventilation and air conditioning (HVAC) of buildings, closely relate to the ventilation and cooling systems of mines, valuable knowledge from this field was used to identify the requirements and specifications for the design of a new single cross industry dynamic integrated thermal and energy system simulation tool. VISUALQEC was designed and implemented to comply with the needs and requirements identified. A new explicit system component model and explicit system simulation engine, combined with a new improved simulation of mass flow through a system procedure, suggested a marked improvement on overall simulation stability, efficiency and speed. The commercial usability of the new simulation tool was verified for building applications by doing an extensive building energy savings audit. The new simulation tool was further verified by simulating the ventilation and cooling (VC) and underground pumping system of a typical South African gold mine. Initial results proved satisfactory but, more case studies to further verify the accuracy of the implemented cross industry thermal and energy system simulation tool are needed. Because of the stable nature of the new VISUALQEC simulation engine, the power of the simulation process can be further extended to the mathematical optimisation of various system variables. In conclusion, this study highlighted the need for new simulation procedures and system designs for the successful implementation and creation of a single dynamic thermal and energy system simulation tool for cross industry applications. South Africa should take full advantage of the power of thermal and energy system simulation towards creating a more energy efficient society. / Thesis (Ph.D. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2005.
2

Designing a dynamic thermal and energy system simulation scheme for cross industry applications / W. Bouwer

Bouwer, Werner January 2004 (has links)
The South African economy, which is largely based on heavy industry such as minerals extraction and processing, is by nature very energy intensive. Based on the abundance of coal resources, electricity in South Africa remains amongst the cheapest in the world. Whilst the low electricity price has contributed towards a competitive position, it has also meant that our existing electricity supply is often taken for granted. The economic and environmental benefits of energy efficiency have been well documented. Worldwide, nations are beginning to face up to the challenge of sustainable energy - in other words to alter the way that energy is utilised so that social, environmental and economic aims of sustainable development are supported. South Africa as a developing nation recognises the need for energy efficiency, as it is the most cost effective way of meeting the demands of sustainable development. South Africa, with its unique economic, environmental and social challenges, stands to benefit the most from implementing energy efficiency practices. The Energy Efficiency Strategy for South Africa takes its mandate from the South African White Paper on Energy Policy. It is the first consolidated governmental effort geared towards energy efficiency practices throughout South Africa. The strategy allows for the immediate implementation of low-cost and no-cost interventions, as well as those higher-cost measures with short payback periods. An initial target has been set for an across sector energy efficiency improvement of 12% by 2014. Thermal and energy system simulation is globally recognised as one of the most effective and powerful tools to improve overall energy efficiency. However, because of the usual extreme mathematical nature of most simulation algorithms, coupled with the historically academic environment in which most simulation software is developed, valid perceptions exist that system simulation is too time consuming and cumbersome. It is also commonly known that system simulation is only effective in the hands of highly skilled operators, which are specialists in their prospective fields. Through previous work done in the field, and the design of a dynamic thermal and energy system simulation scheme for cross industry applications, it was shown that system simulation has evolved to such an extent that these perceptions are not valid any more. The South African mining and commercial building industries are two of the major consumers of electricity within South Africa. By improving energy efficiency practices within the building and mining industry, large savings can be realised. An extensive investigation of the literature showed that no general suitable computer simulation software for cross industry mining and building thermal and energy system simulation could be found. Because the heating, ventilation and air conditioning (HVAC) of buildings, closely relate to the ventilation and cooling systems of mines, valuable knowledge from this field was used to identify the requirements and specifications for the design of a new single cross industry dynamic integrated thermal and energy system simulation tool. VISUALQEC was designed and implemented to comply with the needs and requirements identified. A new explicit system component model and explicit system simulation engine, combined with a new improved simulation of mass flow through a system procedure, suggested a marked improvement on overall simulation stability, efficiency and speed. The commercial usability of the new simulation tool was verified for building applications by doing an extensive building energy savings audit. The new simulation tool was further verified by simulating the ventilation and cooling (VC) and underground pumping system of a typical South African gold mine. Initial results proved satisfactory but, more case studies to further verify the accuracy of the implemented cross industry thermal and energy system simulation tool are needed. Because of the stable nature of the new VISUALQEC simulation engine, the power of the simulation process can be further extended to the mathematical optimisation of various system variables. In conclusion, this study highlighted the need for new simulation procedures and system designs for the successful implementation and creation of a single dynamic thermal and energy system simulation tool for cross industry applications. South Africa should take full advantage of the power of thermal and energy system simulation towards creating a more energy efficient society. / Thesis (Ph.D. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2005.
3

Modélisation et contrôle d’un robot spatial flexible pour la capture d’un débris en rotation / Modeling and Control of a Flexible Space Robot to Capture a Tumbling Debris

Dubanchet, Vincent 14 October 2016 (has links)
Les débris en orbite sont actuellement une source de préoccupation majeure pour les acteurs du spatial et pour le reste de la population, comme en témoignent les articles de presse et les œuvres cinématographiques sur le sujet. En effet, la présence de ces objets menace directement les astronautes en mission et les satellites en opération. Parmi les nombreuses options déjà envisagées pour les traiter, cette thèse se concentre sur l’approche robotique, en proposant des outils et des méthodes de modélisation et de contrôle pour un satellite chasseur équipé d’un bras manipulateur. Des modèles dynamiques et des schémas de simulation optimisés sont ainsi développés pour tout système multi-corps constitué d’une base mobile supportant un nombre quelconque d’appendices rigides ou flexibles. Par la suite, les trajectoires de capture sont générées en conservant la continuité en accélération avec le mouvement naturel du point cible, dans le but de saisir aussi délicatement que possible le débris en rotation. Le suivi de cette trajectoire par l’effecteur du robot chasseur est alors assuré par une loi de contrôle à deux niveaux, dont le réglage repose sur la synthèse H1 structurée. Une étude de robustesse est également mise en place pour assurer la stabilité et les performances du système en boucle fermée, malgré les changements de configuration du bras. Enfin, la validation des travaux de thèse est réalisée par voie numérique avec un simulateur haute-fidélité, et par voie pratique avec un banc d’essais robotique incluant des composants physiques en temps réel. / On-orbit debris are currently causing deep concern for space agencies, related companies, and also among the population. ¿is is evidenced by the numerous scientific articles and recent movies on the matter. Indeed, these objects pose a serious threat for the astronauts on mission and for operational satellites. Among the various technical concepts already designed to address these threats, this thesis focuses on space robotics. Tools and methods are thus introduced for the modeling and control of a chaser satellite equipped with a manipulator. Dynamic models and optimized simulation schemes are developed to handle any multi-body system made up of amoving base embedding various appendages, either rigid or flexible. ¿en, a trajectory planner is designed to ensure acceleration continuity with the natural motion of the debris in order to perform a soft capture. ¿is reference trajectory is tracked by the end-effector of the chaser using a two-level control law, which is tuned by the structured H1 synthesis. A robustness analysis is also presented to assess the stability and the performances of the closed-loop system with respect to the motion of the robotic arm. Finally, the outcome of the thesis is validated by a twofold approach: by numerical means with a highfidelity simulator, and by practical ones with a robotic test bench including physical components in real time.

Page generated in 0.2315 seconds