• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 6
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 72
  • 72
  • 71
  • 42
  • 25
  • 21
  • 17
  • 16
  • 15
  • 14
  • 14
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Towards Dense Visual SLAM

Pietzsch, Tobias 05 December 2011 (has links) (PDF)
Visual Simultaneous Localisation and Mapping (SLAM) is concerned with simultaneously estimating the pose of a camera and a map of the environment from a sequence of images. Traditionally, sparse maps comprising isolated point features have been employed, which facilitate robust localisation but are not well suited to advanced applications. In this thesis, we present map representations that allow a more dense description of the environment. In one approach, planar features are used to represent textured planar surfaces in the scene. This model is applied within a visual SLAM framework based on the Extended Kalman Filter. We presents solutions to several challenges which arise from this approach.
72

Towards Dense Visual SLAM

Pietzsch, Tobias 07 June 2011 (has links)
Visual Simultaneous Localisation and Mapping (SLAM) is concerned with simultaneously estimating the pose of a camera and a map of the environment from a sequence of images. Traditionally, sparse maps comprising isolated point features have been employed, which facilitate robust localisation but are not well suited to advanced applications. In this thesis, we present map representations that allow a more dense description of the environment. In one approach, planar features are used to represent textured planar surfaces in the scene. This model is applied within a visual SLAM framework based on the Extended Kalman Filter. We presents solutions to several challenges which arise from this approach.

Page generated in 0.0842 seconds