• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation and experimental study for vibration analysis on rotating machinery

Zainal, Mohd Shafiq Sharhan bin January 2020 (has links)
This student thesis aims to analyze the unbalance on rotating machinery by simulation and experimental. The machinery flywheel rotation is modelled as a Single Degree of Freedom (SDOF) and Multi Degree of Freedom (MDOF) system. The model rotation unbalance is simulated by MATLAB. Then the vibration measurement is taken by experimental. In addition, the tachometer is used to determine the flywheel speed calibration. Finally, the rotating unbalance reduction simulation is performed with different parameter value to determine an optimum level of machinery rotation vibration. Unbalance on rotating machinery causes a harmful influence on the environment and machinery. The root cause of rotating unbalance is determined by the simulation and experimental analysis. The analysis result is used as an indicator for predicting machinery breakdown and estimating the correct predictive maintenance action for the machinery. In this project, the simulation and experimental analysis were carried out on a rotating component of the KICKR Snap Bike Trainer. The simulation and numerical analysis are performed by MATLAB programme. On the experimental part, the vibration measurement method and results were discussed. The suggestion of unbalance reduction were recommended base on measurement and vibration analysis results.

Page generated in 0.0673 seconds