• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Linking neurophysiological data to cognitive functions : methodological developments and applications / Lier les données neurophysiologiques aux fonctions cognitives : développements méthodologiques et applications

Dubarry, Anne-Sophie 21 June 2016 (has links)
Un des enjeux majeurs de la Psychologie Cognitive est de décrire les grandes fonctions mentales, notamment chez l’humain. Du point de vue neuroscientifique, il s’agit de modéliser l’activité cérébrale pour en extraire les éléments et mécanismes spatio-temporels susceptibles d’être mis en correspondance avec les opérations cognitives. Le travail de cette thèse a consisté à définir et mettre en œuvre des stratégies originales permettant de confronter les modèles cognitifs existants à des données issues d’enregistrements neurophysiologiques chez l’humain. Dans une première étude nous avons démontré que la distinction entre les organisations classiques de la dénomination de dessin sériel-parallèle, doit être adressée au niveau des essais uniques et non sur la moyenne des signaux. Nous avons conçu et mené l’analyse des signaux SEEG de 15 patients pour montrer que l’organisation temporelle de la dénomination de dessin n’est pas, au sens strict, parallèle. Dans une deuxième étude nous avons combiné trois techniques d’enregistrements : SEEG, EEG et MEG pour clarifier l’organisation spatiale des sources d’activité neuronales. Nous avons établi la faisabilité de l’enregistrement sur un patient qui exécute une tâche de perception visuelle. Au delà des corrélations entre les signaux moyens des trois techniques, cette analyse a révélé des corrélations au niveau des essais uniques. À travers deux approches expérimentales, cette thèse propose de nombreux développements méthodologiques et conceptuels originaux et pertinents. Ces contributions ouvrent de nouvelles perspectives à partir desquelles les signaux neurophysiologiques pourront informer les théories des Neurosciences Cognitives. / A major issue in Cognitive Psychology is to describe human cognitive functions. From the Neuroscientific perceptive, measurements of brain activity are collected and processed in order to grasp, at their best resolution, the relevant spatio-temporal features of the signal that can be linked with cognitive operations. The work of this thesis consisted in designing and implementing strategies in order to overcome spatial and temporal limitations of signal processing procedures used to address cognitive issues. In a first study we demonstrated that the distinction between picture naming classical temporal organizations serial-parallel, should be addressed at the level of single trials and not on the averaged signals. We designed and conducted the analysis of SEEG signals from 5 patients to show that the temporal organization of picture naming involves a parallel processing architecture to a limited degree only. In a second study, we combined SEEG, EEG and MEG into a simultaneous trimodal recording session. A patient was presented with a visual stimulation paradigm while the three types of signals were simultaneously recorded. Averaged activities at the sensor level were shown to be consistent across the three techniques. More importantly a fine-grained coupling between the amplitudes of the three recording techniques is detected at the level of single evoked responses. This thesis proposes various relevant methodological and conceptual developments. It opens up several perspectives in which neurophysiological signals shall better inform Cognitive Neuroscientific theories.
2

Modèles bayésiens pour la détection de synchronisations au sein de signaux électro-corticaux / Bayesian models for synchronizations detection in electrocortical signals

Rio, Maxime 16 July 2013 (has links)
Cette thèse propose de nouvelles méthodes d'analyse d'enregistrements cérébraux intra-crâniens (potentiels de champs locaux), qui pallie les lacunes de la méthode temps-fréquence standard d'analyse des perturbations spectrales événementielles : le calcul d'une moyenne sur les enregistrements et l'emploi de l'activité dans la période pré-stimulus. La première méthode proposée repose sur la détection de sous-ensembles d'électrodes dont l'activité présente des synchronisations cooccurrentes en un même point du plan temps-fréquence, à l'aide de modèles bayésiens de mélange gaussiens. Les sous-ensembles d'électrodes pertinents sont validés par une mesure de stabilité calculée entre les résultats obtenus sur les différents enregistrements. Pour la seconde méthode proposée, le constat qu'un bruit blanc dans le domaine temporel se transforme en bruit ricien dans le domaine de l'amplitude d'une transformée temps-fréquence a permis de mettre au point une segmentation du signal de chaque enregistrement dans chaque bande de fréquence en deux niveaux possibles, haut ou bas, à l'aide de modèles bayésiens de mélange ricien à deux composantes. À partir de ces deux niveaux, une analyse statistique permet de détecter des régions temps-fréquence plus ou moins actives. Pour développer le modèle bayésien de mélange ricien, de nouveaux algorithmes d'inférence bayésienne variationnelle ont été créés pour les distributions de Rice et de mélange ricien. Les performances des nouvelles méthodes ont été évaluées sur des données artificielles et sur des données expérimentales enregistrées sur des singes. Il ressort que les nouvelles méthodes génèrent moins de faux-positifs et sont plus robustes à l'absence de données dans la période pré-stimulus / This thesis promotes new methods to analyze intracranial cerebral signals (local field potentials), which overcome limitations of the standard time-frequency method of event-related spectral perturbations analysis: averaging over the trials and relying on the activity in the pre-stimulus period. The first proposed method is based on the detection of sub-networks of electrodes whose activity presents cooccurring synchronisations at a same point of the time-frequency plan, using bayesian gaussian mixture models. The relevant sub-networks are validated with a stability measure computed over the results obtained from different trials. For the second proposed method, the fact that a white noise in the temporal domain is transformed into a rician noise in the amplitude domain of a time-frequency transform made possible the development of a segmentation of the signal in each frequency band of each trial into two possible levels, a high one and a low one, using bayesian rician mixture models with two components. From these two levels, a statistical analysis can detect time-frequency regions more or less active. To develop the bayesian rician mixture model, new algorithms of variational bayesian inference have been created for the Rice distribution and the rician mixture distribution. Performances of the new methods have been evaluated on artificial data and experimental data recorded on monkeys. It appears that the new methods generate less false positive results and are more robust to a lack of data in the pre-stimulus period
3

Increasing information transfer rates for brain-computer interfacing

Dornhege, Guido January 2006 (has links)
The goal of a Brain-Computer Interface (BCI) consists of the development of a unidirectional interface between a human and a computer to allow control of a device only via brain signals. While the BCI systems of almost all other groups require the user to be trained over several weeks or even months, the group of Prof. Dr. Klaus-Robert Müller in Berlin and Potsdam, which I belong to, was one of the first research groups in this field which used machine learning techniques on a large scale. The adaptivity of the processing system to the individual brain patterns of the subject confers huge advantages for the user. Thus BCI research is considered a hot topic in machine learning and computer science. It requires interdisciplinary cooperation between disparate fields such as neuroscience, since only by combining machine learning and signal processing techniques based on neurophysiological knowledge will the largest progress be made.<br><br> In this work I particularly deal with my part of this project, which lies mainly in the area of computer science. I have considered the following three main points:<br><br> <b>Establishing a performance measure based on information theory:</b> I have critically illuminated the assumptions of Shannon's information transfer rate for application in a BCI context. By establishing suitable coding strategies I was able to show that this theoretical measure approximates quite well to what is practically achieveable.<br> <b>Transfer and development of suitable signal processing and machine learning techniques:</b> One substantial component of my work was to develop several machine learning and signal processing algorithms to improve the efficiency of a BCI. Based on the neurophysiological knowledge that several independent EEG features can be observed for some mental states, I have developed a method for combining different and maybe independent features which improved performance. In some cases the performance of the combination algorithm outperforms the best single performance by more than 50 %. Furthermore, I have theoretically and practically addressed via the development of suitable algorithms the question of the optimal number of classes which should be used for a BCI. It transpired that with BCI performances reported so far, three or four different mental states are optimal. For another extension I have combined ideas from signal processing with those of machine learning since a high gain can be achieved if the temporal filtering, i.e., the choice of frequency bands, is automatically adapted to each subject individually.<br> <b>Implementation of the Berlin brain computer interface and realization of suitable experiments:</b> Finally a further substantial component of my work was to realize an online BCI system which includes the developed methods, but is also flexible enough to allow the simple realization of new algorithms and ideas. So far, bitrates of up to 40 bits per minute have been achieved with this system by absolutely untrained users which, compared to results of other groups, is highly successful. / Ein Brain-Computer Interface (BCI) ist eine unidirektionale Schnittstelle zwischen Mensch und Computer, bei der ein Mensch in der Lage ist, ein Gerät einzig und allein Kraft seiner Gehirnsignale zu steuern. In den BCI Systemen fast aller Forschergruppen wird der Mensch in Experimenten über Wochen oder sogar Monaten trainiert, geeignete Signale zu produzieren, die vordefinierten allgemeinen Gehirnmustern entsprechen. Die BCI Gruppe in Berlin und Potsdam, der ich angehöre, war in diesem Feld eine der ersten, die erkannt hat, dass eine Anpassung des Verarbeitungssystems an den Menschen mit Hilfe der Techniken des Maschinellen Lernens große Vorteile mit sich bringt. In unserer Gruppe und mittlerweile auch in vielen anderen Gruppen wird BCI somit als aktuelles Forschungsthema im Maschinellen Lernen und folglich in der Informatik mit interdisziplinärer Natur in Neurowissenschaften und anderen Feldern verstanden, da durch die geeignete Kombination von Techniken des Maschinellen Lernens und der Signalverarbeitung basierend auf neurophysiologischem Wissen der größte Erfolg erzielt werden konnte.<br><br> In dieser Arbeit gehe ich auf meinem Anteil an diesem Projekt ein, der vor allem im Informatikbereich der BCI Forschung liegt. Im Detail beschäftige ich mich mit den folgenden drei Punkten:<br><br> <b>Diskussion eines informationstheoretischen Maßes für die Güte eines BCI's:</b> Ich habe kritisch die Annahmen von Shannon's Informationsübertragungsrate für die Anwendung im BCI Kontext beleuchtet. Durch Ermittlung von geeigneten Kodierungsstrategien konnte ich zeigen, dass dieses theoretische Maß den praktisch erreichbaren Wert ziemlich gut annähert.<br> <b>Transfer und Entwicklung von geeigneten Techniken aus dem Bereich der Signalverarbeitung und des Maschinellen Lernens:</b> Eine substantielle Komponente meiner Arbeit war die Entwicklung von Techniken des Machinellen Lernens und der Signalverarbeitung, um die Effizienz eines BCI's zu erhöhen. Basierend auf dem neurophysiologischem Wissen, dass verschiedene unabhängige Merkmale in Gehirnsignalen für verschiedene mentale Zustände beobachtbar sind, habe ich eine Methode zur Kombination von verschiedenen und unter Umständen unabhängigen Merkmalen entwickelt, die sehr erfolgreich die Fähigkeiten eines BCI's verbessert. Besonders in einigen Fällen übertraf die Leistung des entwickelten Kombinationsalgorithmus die beste Leistung auf den einzelnen Merkmalen mit mehr als 50 %. Weiterhin habe ich theoretisch und praktisch durch Einführung geeigneter Algorithmen die Frage untersucht, wie viele Klassen man für ein BCI nutzen kann und sollte. Auch hier wurde ein relevantes Resultat erzielt, nämlich dass für BCI Güten, die bis heute berichtet sind, die Benutzung von 3 oder 4 verschiedenen mentalen Zuständen in der Regel optimal im Sinne von erreichbarer Leistung sind. Für eine andere Erweiterung wurden Ideen aus der Signalverarbeitung mit denen des Maschinellen Lernens kombiniert, da ein hoher Erfolg erzielt werden kann, wenn der temporale Filter, d.h. die Wahl des benutzten Frequenzbandes, automatisch und individuell für jeden Menschen angepasst wird.<br> <b>Implementation des Berlin Brain-Computer Interfaces und Realisierung von geeigneten Experimenten:</b> Eine weitere wichtige Komponente meiner Arbeit war eine Realisierung eines online BCI Systems, welches die entwickelten Methoden umfasst, aber auch so flexibel ist, dass neue Algorithmen und Ideen einfach zu verwirklichen sind. Bis jetzt wurden mit diesem System Bitraten von bis zu 40 Bits pro Minute von absolut untrainierten Personen in ihren ersten BCI Experimenten erzielt. Dieses Resultat übertrifft die bisher berichteten Ergebnisse aller anderer BCI Gruppen deutlich. <br> <hr> Bemerkung:<br> Der Autor wurde mit dem <i>Michelson-Preis</i> 2005/2006 für die beste Promotion des Jahrgangs der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam ausgezeichnet.

Page generated in 0.0465 seconds