• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Time resolved single photon imaging in nanometer scale CMOS technology

Richardson, Justin Andrew January 2010 (has links)
Time resolved imaging is concerned with the measurement of photon arrival time. It has a wealth of emerging applications including biomedical uses such as fluorescence lifetime microscopy and positron emission tomography, as well as laser ranging and imaging in three dimensions. The impact of time resolved imaging on human life is significant: it can be used to identify cancerous cells in-vivo, how well new drugs may perform, or to guide a robot around a factory or hospital. Two essential building blocks of a time resolved imaging system are a photon detector capable of sensing single photons, and fast time resolvers that can measure the time of flight of light to picosecond resolution. In order to address these emerging applications, miniaturised, single-chip, integrated arrays of photon detectors and time resolvers must be developed with state of the art performance and low cost. The goal of this research is therefore the design, layout and verification of arrays of low noise Single Photon Avalanche Diodes (SPADs) together with high resolution Time-Digital Converters (TDCs) using an advanced silicon fabrication process. The research reported in this Thesis was carried out as part of the E.U. funded Megaframe FP6 Project. A 32x32 pixel, one million frames per second, time correlated imaging device has been designed, simulated and fabricated using a 130nm CMOS Imaging process from ST Microelectronics. The imager array has been implemented together with required support cells in order to transmit data off chip at high speed as well as providing a means of device control, test and calibration. The fabricated imaging device successfully demonstrates the research objectives. The Thesis presents details of design, simulation and characterisation results of the elements of the Megaframe device which were the author’s own work. Highlights of the results include the smallest and lowest noise SPAD devices yet published for this class of fabrication process and an imaging array capable of recording single photon arrivals every microsecond, with a minimum time resolution of fifty picoseconds and single bit linearity.
2

Single-Photon Avalanche Diode theory, simulation, and high performance CMOS integration

Webster, Eric Alexander Garner January 2013 (has links)
This thesis explores Single-Photon Avalanche Diodes (SPADs), which are solid-state devices for photon timing and counting, and concentrates on SPADs integrated in nano-scale CMOS. The thesis focuses on: the search for new theory regarding Geiger-mode operation; proving the utility of calibrated Technology Computer- Aided Design (TCAD) tools for accurately simulating SPADs for the first time; the investigation of how manufacture influences device operation; and the integration of high performance SPADs into CMOS which rival discrete devices. The accepted theories of SPAD operation are revisited and it is discovered that previously neglected minority carriers have many significant roles such as determining: after-pulsing, Dark Count Rate (DCR), bipolar “SPAD latch-up,” nonequilibrium DCR, and “quenching”. The “quenching” process is revisited and it is concluded that it is the “probability time” of ≈100-200ps, and not the previously thought latching current that is important. SPADs are also found to have transient negative differential resistance. The new theories of SPADs are also supported by steady-state 1D, 2D and 3D TCAD simulations as well as novel transient simulations and videos. It is demonstrated as possible to simulate DCR, Photon Detection Efficiency (PDE), guard ring performance, breakdown voltage, breakdown voltage variation, “quenching,” and transient operation of SPADs with great accuracy. The manufacture of SPADs is studied focusing on the operation and optimisation of guard rings and it is found that ion implantation induced asymmetry from the tilt and rotation/twist is critical. Where symmetric, guard rings fail first along the <100> directions due to enhanced mobility. Process integration rules are outlined for obtaining high performance SPADs in CMOS while maintaining compatibility with transistors. The minimisation of tunnelling with lightly-doped junctions and the reduction of ion implantation induced defects by additional annealing are found essential for achieving low DCR. The thesis demonstrates that it is possible to realise high performance SPADs in CMOS through the innovation of a “Deep SPAD” which achieves record PDE of ≈72% at 560nm with >40% PDE from 410-760nm, combined with 18Hz DCR, <60ps FWHM timing resolution, and <4% after-pulsing which is demonstrated to have potential for significant further improvement. The findings suggest that CMOS SPAD-based micro-systems could outperform existing photon timing and counting solutions in the future.
3

Visible light communications with single-photon avalanche diodes

Alsolami, Ibrahim January 2014 (has links)
This thesis explores the use of single-photon avalanche diodes (SPADs) for visible light communications (VLC). The high sensitivity of SPADs can potentially enhance the performance of VLC receivers. However, a SPAD-based system has challenges that need to be addressed before it can be considered as a viable option for VLC. The first challenge is the susceptibility of SPAD-based receivers to variations in ambient light. The high sensitivity of SPADs is advantageous for signal detection, but also makes SPADs vulnerable to variations in ambient light. In this thesis, the performance of a SPAD-based receiver is investigated under changing lighting conditions. Analytical expressions to quantify performance are derived, and an experiment is conducted to gain further understanding of system performance. It is shown that a SPAD-based receiver is highly sensitive to illumination changes when on-off keying (OOK) is employed, and that pulse-position modulation (PPM) is a preferred modulation scheme as it is more robust. The second challenge is broadcasting to SPAD-based receivers with different capabilities. A traditional broadcasting scheme is time-sharing, whereby a transmitter sends data to receivers in an alternating manner. Broadcasting to SPAD-based receivers is challenging as receivers may have diverse capabilities. In this thesis, a new multiresolution modulation scheme is proposed, which can potentially improve system performance over the traditional timesharing approach. The performance of the proposed scheme is analyzed, and a proof-of-concept experiment is performed to demonstrate its viability.
4

Conception et modélisation de détecteurs de radiation basés sur des matrices de photodiodes à avalanche monophotoniques pour la tomographie d'émission par positrons / Design and simulation of radiation detectors based on single photon avalanche diodes for positron emission tomography

Corbeil Therrien, Audrey January 2018 (has links)
La tomographie d'émission par positrons (TEP) se distingue des autres modalités d'imagerie par sa capacité à localiser et quantifier la présence de molécules marquées, appelées radiotraceurs, au sein d'un organisme. Cette capacité à mesurer l'activité biologique des différents tissus d'un sujet apporte des informations uniques et essentielles à l'étude de tumeurs cancéreuses, au fonctionnement du cerveau et de ses maladies neurodégénératives et de la pharmacodynamique de nouveaux médicaments. Depuis les tout débuts de la TEP, les scientifiques rêvent de pouvoir utiliser l'information de temps de vol des photons pour améliorer la qualité de l'image TEP. L'arrivée des photodiodes avalanche monophotoniques (PAMP), rend maintenant ce rêve possible. Ces dispositifs détectent la faible émission de lumière des scintillateurs et présentent une réponse grandement amplifiée avec une faible incertitude temporelle. Mais le potentiel des PAMP n'est pas encore entièrement exploré. Plutôt que de faire la somme des courants d'une matrice de PAMP, il est possible d'utiliser leur nature intrinsèquement binaire afin de réaliser un photodétecteur numérique capable de déterminer avec précision le temps d'arrivée de chaque photon de scintillation. Toutefois, la conception de matrices de PAMP numériques en est encore à ses débuts, et les outils de conception se font rares. Ce projet de doctorat propose un simulateur facilitant la conception de matrices de PAMP, que celles-ci soient analogiques ou numériques. Avec cet outil, l'optimisation d'une matrice de PAMP numérique basée dans une technologie Teledyne DALSA HV CMOS \SI{0,8}{\micro\metre} est proposée. En plus de guider les choix de conception de l'équipe, cette optimisation permet de mieux comprendre quels paramètres influencent les performances du détecteur. De plus, puisque le photodétecteur n'est pas l'unique acteur des performances d'un détecteur TEP, une étude sur l'impact des scintillateurs est aussi présentée. Cette étude vérifie l'amélioration apportée par l'intégration de photons prompts dans des scintillateurs LYSO. Enfin, une approche novatrice pour discriminer l'énergie des évènements TEP basée sur l'information temporelle des photons de scintillation a été développée et vérifiée à l'aide du simulateur. Bien que ce simulateur et les études réalisées dans le cadre de cette thèse soient concentrés sur des détecteurs TEP, l'utilité des PAMP et du simulateur ne se limite pas à cette application. Les matrices de PAMP sont prisées pour le développement de détecteur en physique des particules, physique nucléaire, informatique quantique, LIDAR et bien d'autres. / Abstract : Positron emission tomography (PET) stands out among other imaging modalities by its ability to locate and quantify the presence of marked molecules, called radiotracers, within an organism. The capacity to measure biological activity of various organic tissues provides unique information, essential to the study of cancerous tumors, brain functions and the pharmacodynamics of new medications. Since the very beginings of PET, scientists dreamed of using the photon's time-of-flight information to improve PET images. With the recent progress of Single Photon Avalanche Diodes (SPAD), this dream is now possible. These photodetectors detect the scintillators' low light emission and offers a greatly amplified response with only a small time uncertainty. However the potential of SPAD has not yet been entirely explored. Instead of summing the currents of a SPAD array, it is possible to use their intrinsically binary operation to build a digital photodetector, able to establish with precision the time of arrival of each scintillation photon. With this information, the time-of-flight measurements will be much more precise. Yet the design of digital SPAD arrays is in its infancy and design tools for this purpose are rare. This project proposes a simulator to aid the design of SPAD arrays, both analog and digital. With this tool, we propose an optimised design for a digital SPAD array fabricated in Teledyne Dalsa HV CMOS \SI{0.8}{\micro\metre} technology. In addition to guiding the design choices of our team, this optimisation led to a better understanding which parameters influence the performance of a PET detector. In addition, since the photodetector is not the sole actor in the performance of a PET detector, a study on the effect of scintillators is also presented. This study evaluates the improvement brought by incorporating a prompt photon emission mechanism in LYSO crystals. Finally, we describe a novel approach to energy discrimination based on the timing information of scintillation photons was developped and tested using the simulator. While this simulator and the studies presented in this thesis focus on PET detectors, SPAD are not limited to this sole application. SPAD arrays are promising for a wide variety of fields, including particle physics, high energy physics, quantum computing, LIDAR and many more.

Page generated in 0.0765 seconds