• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 202
  • 35
  • 11
  • 8
  • 8
  • 7
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 340
  • 340
  • 71
  • 69
  • 65
  • 64
  • 50
  • 37
  • 37
  • 35
  • 34
  • 33
  • 31
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Development of a Microfluidic Device for Selective Electrical Lysis of Plasma Membranes of Single Cells

Shah, Duoaud F. 11 January 2011 (has links)
A primary objective of modern biology is to understand the molecular mechanisms which underlie cellular functions and a crucial part of this task is the ability to manipulate and analyze individual cells. As a result of interdisciplinary research, microfluidics may become the forefront of analytical methods used by biologists. This technology can be used to gain unprecedented opportunities for cell handling, lysis and investigation on a single cell basis. This thesis presents the development of a microfluidic device capable of selecting individual cells and performing selective electrical lysis of the plasma membrane, while verifying intactness of the nuclear membrane. The device is fabricated by an improved photolithography method and integrates molten solder as electrodes for lysis by a DC electric field. Quantification of lysis is accomplished by video and image analysis, and measurement of the rate of ion diffusion from the cell.
82

Application of Proximity Ligation Assay for Multidirectional Studies on Transforming Growth Factor-β Pathway

Zieba, Agata January 2012 (has links)
A comprehensive understanding of how the body and all its components function is essential when this knowledge is exploited for medical purposes. The achievements in biological and medical research during last decades has provided us with the complete human genome and identified signaling pathways that governs the cellular processes that facilitates the development and maintenance of higher order organisms. This has brought about the realization that diseases such as cancer is a consequence of genomic aberrations that effects these signaling pathways, endowing cancer cells with the capacity to circumvent homeostasis by acquiring features like self-sustained proliferation and insensitivity to apoptosis. The increased understanding of biology and medicine has been made possible by the development of advanced methods to carry out biological and clinical analyses. The demands of a method often differ regarding in what context it will be applied. It may be acceptable for method to be laborious and time consuming if it is used in basic research, but for medical purposes molecular methods need to be fast and straightforward to perform. Innovative technologies should preferentially address the demands of both researchers and clinicians and provide data not possible to obtain by other methods. An example of such a method is the in situ proximity ligation assay (in situ PLA). In this thesis I have used this method to determine the activity status, at the single-cell level, of the transforming growth factor-β (TGF-β) signaling pathway and activating protein-1 (AP-1) family of transcription factors.  Both of these pathways are frequently involved in cancer development and progression. In addition to this research I herein also present further modifications of in situ PLA, and analyses thereof, to increase the utility and resolution of this assay.
83

Detection and analysis of genetic alterations in normal skin and skin tumours

Sivertsson, Åsa January 2002 (has links)
<p>The investigation of genetic alterations in cancer-relatedgenes is useful for research, prognostic and therapeuticpurposes. However, the genetic heterogeneity that often occursduring tumour progression can make correct analysischallenging. The objective of this work has been to develop,evaluate and apply techniques that are sufficiently sensitiveand specific to detect and analyse genetic alterations in skintumours as well as in normal skin.</p><p>Initially, a method based on laser-assisted microdissectionin combination with conventional dideoxy sequencing wasdeveloped and evaluated for the analysis of the p53 tumoursuppressor gene in small tissue samples. This method was shownto facilitate the analysis of single somatic cells fromhistologic tissue sections. In two subsequent studies themethod was used to analyse single cells to investigate theeffects of ultraviolet (UV) light on normal skin. Single p53immunoreactive and nonimmunoreactive cells from differentlayers of sunexposed skin, as well as skin protected fromexposure, were analysed for mutations in the p53 gene. Theresults revealed the structure of a clandestine p53 clone andprovided new insight into the possible events involved innormal differentiation by suggesting a role for allele dropout.The mutational effect of physiological doses of ultravioletlight A (UVA) on normal skin was then investigated by analysingthe p53 gene status in single immunoreactive cells at differenttime-points. Strong indications were found that UVA (even atlow doses) is indeed a mutagen and that its role should not bedisregarded in skin carcinogenesis.</p><p>After slight modifications, the p53 mutation analysisstrategy was thenused to complement an x-chromosomeinactivation assay for investigation of basal cell cancer (BCC)clonality. The conclusion was that although the majority ofBCC’s are of monoclonal origin, an occasional tumour withapparently polyclonal origin exists. Finally, apyrosequencing-based mutation detection method was developedand evaluated for detection of hot-spot mutations in the N-rasgene of malignant melanoma. More than 80 melanoma metastasissamples were analysed by the standard approach of single strandconformation polymorphism analysis (SSCP)/DNA sequencing and bythis pyrosequencing strategy. Pyrosequencing was found to be agood alternative to SSCP/DNA sequencing and showed equivalentreproducibility and sensitivity in addition to being a simpleand rapid technique.</p><p><b>Keywords:</b>single cell, DNA sequencing, p53, mutation,UV, BCC, pyrosequencing, malignant melanoma, N-ras</p>
84

Studies in pharmaceutical biotechnology : protein-protein interactions and beyond

Umeda, Aiko 02 July 2012 (has links)
Pharmaceutical biotechnology has been emerging as a defined, increasingly important area of science dedicated to the discovery and delivery of drugs and therapies for the treatment of various human diseases. In contrast to the advancement in pharmaceutical biotechnology, current drug discovery efforts are facing unprecedented challenges. Difficulties in identifying novel drug targets and developing effective and safe drugs are closely related to the complexity of the network of interacting human proteins. Protein-protein interactions mediate virtually all cellular processes. Therefore both identification and understanding of protein-protein interactions are essential to the process of deciphering disease mechanisms and developing treatments. Unfortunately, our current knowledge and understanding of the human interactome is largely incomplete. Most of the unknown protein-protein interactions are expected to be weak and/or transient, hence are not easily identified. These unknown or uncharacterized interactions could affect the efficacy and toxicity of drug candidates, contributing to the high rate of failure. In an attempt to facilitate the ongoing efforts in drug discovery, we describe herein a series of novel methods and their applications addressing the broad topic of protein-protein interactions. We have developed a highly efficient site-specific protein cross-linking technology mediated by the genetically incorporated non-canonical amino acid L-DOPA to facilitate the identification and characterization of weak protein-protein interactions. We also established a protocol to incorporate L-DOPA into proteins in mammalian cells to enable in vivo site-specific protein cross-kinking. We then applied the DOPA-mediated cross-linking methodology to design a protein probe which can potentially serve as a diagnostic tool or a modulator of protein-protein interactions in vivo. To deliver such engineered proteins or other bioanalytical reagents into single live cells, we established a laser-assisted cellular nano-surgery protocol which would enable detailed observations of cell-to-cell variability and communication. Finally we investigated a possible experimental scheme to genetically evolve a fluorescent peptide, which has tremendous potential as a tool in cellular imaging and dynamic observation of protein-protein interactions in vivo. We aim to contribute to the discovery and development of new drugs and eventually to the overall health of our society by adding the technology above to the array of currently available bioanalytical tools. / text
85

Single Cell Imaging of Metabolism with Fluorescent Biosensors

Hung, Yin Pun 21 June 2013 (has links)
Cells utilize various signal transduction networks to regulate metabolism. Nevertheless, a quantitative understanding of the relationship between growth factor signaling and metabolic state at the single cell level has been lacking. The signal transduction and metabolic states could vary widely among individual cells. However, such cell-to-cell variation might be masked by the bulk measurements obtained from conventional biochemical methods. To assess the spatiotemporal dynamics of metabolism in individual intact cells, we developed genetically encoded biosensors based on fluorescent proteins. As a key redox cofactor in metabolism, NADH has been implicated in the Warburg effect, the abnormal metabolism of glucose that is a hallmark of cancer cells. To date, however, sensitive and specific detection of NADH in the cytosol of individual live cells has been difficult. We engineered a fluorescent biosensor of NADH by combining a circularly permuted green fluorescent protein variant with a bacterial NADH-binding protein Rex. The optimized biosensor Peredox reports cytosolic \(NADH:NAD^+\) ratios in individual live cells and can be calibrated with exogenous lactate and pyruvate. Notably pH resistant, this biosensor can be used in several cultured and primary cell types and in a high-content imaging format. We then examined the single cell dynamics of glycolysis and energy-sensing signaling pathways using Peredox and other fluorescent biosensors: AMPKAR, a sensor of the AMPK activity; and FOXO3-FP, a fluorescently-tagged protein domain from Forkhead transcription factor FOXO3 to report on the PI3K/Akt pathway activity. With perturbation to growth factor signaling, we observed a transient response in the cytosolic \(NADH:NAD^+\) redox state. In contrast, with partial inhibition of glycolysis by iodoacetate, individual cells varied substantially in their responses, and cytosolic \(NADH:NAD^+\) ratios oscillated between high and low states with a regular, approximately half-hour period, persisting for hours. These glycolytic NADH oscillations appeared to be cell-autonomous and coincided with the activation of the PI3K/Akt pathway but not the AMPK pathway. These results suggest a dynamic coupling between growth factor signaling and metabolic parameters. Overall, this thesis presents novel optical tools to assess metabolic dynamics – and to unravel the elaborate and complex integration of glucose metabolism and signaling pathways at the single cell level.
86

Biology at single-molecule and single-cell level: chromosome organization, gene expression and beyond

Chen, Chongyi January 2014 (has links)
Single molecules and single cells are the fundamental building blocks in biology. Facilitated by the advancement of technology, quantitative single-molecule and single-cell measurements provide a unique perspective toward many biological systems by revealing individual stochasticity and population heterogeneity. Taking advantage of these approaches, we studied chromosome organization and gene expression in bacteria and discovered new biophysical mechanisms: chromosome organization by a nucleoid-associated protein in live bacteria, and transcriptional bursting by the regulation of DNA supercoiling in bacteria.
87

Elucidation of immune cell function via nanotechnology and single-cell profiling.

Gaublomme, Jellert Thomas January 2014 (has links)
A healthy immune system's core challenge is to mount appropriate responses to an immense and unknown variety of antigenic stimuli. By unraveling the regulatory networks that drive and control immune-cell behaviors, we can begin to identify the means by which proper balance can be achieved and aberrant behaviors clinically corrected. Traditionally, major advances in our understanding of cellular immunological processes depended critically on both improved perturbation and enhanced observation methods. In my doctoral research, I have pursued both strategies to elucidate the differentiation and effector functions of adaptive immune Th17 cells. These cells exemplify the need for balance: while Th17 cells are needed to induce clearance of fungal infections and extracellular bacteria, irregular responses have been strongly implicated in autoimmunity. / Chemistry and Chemical Biology
88

Defining and Targeting Transcriptional Pathways in Leukemia Stem Cells

Puram, Rishi Venkata January 2014 (has links)
Acute myeloid leukemia (AML) is a clonal neoplastic disorder organized as a cellular hierarchy, with the self-renewing leukemia stem cell (LSC) at the apex. Recurrent mutations in transcription factors (TF) and epigenetic regulators suggest that AML is driven by aberrant transcriptional circuits, but these circuits have not been fully defined in an LSC model. To study transcriptional mechanisms relevant to leukemogenesis in vivo, we generated a murine serial transplantation model of MLL-AF9-driven, myelomonocytic leukemia with genetically- and phenotypically-defined LSCs. Using this model, we pursued two related lines of investigation. First, we performed an in vivo RNA interference (RNAi) screen to identify transcription factors required for LSC function. This screen highlighted the circadian rhythm TFs, Clock and Bmal1, as genes essential for the survival of murine leukemia cells, and we validated this finding with CRISPR/Cas-based genome editing and knockdown studies in AML cell lines. Utilizing luciferase reporter mice to track expression of the circadian target gene Per2, we demonstrated that both leukemic and normal hematopoietic cells have the capacity for oscillating, circadian-dependent gene expression. Importantly, using murine knockout models, we found that normal hematopoietic stem and progenitor cells (HSPC), in contrast to leukemia cells, do not depend on Bmal1. We further demonstrated that selective depletion of LSCs following circadian perturbation is mediated through enhanced myeloid differentiation. ChIP-Seq studies revealed that the circadian rhythm network is integrally connected to the LSC self-renewal circuitry and highlighted putative Clock/Bmal1 targets in leukemia, providing a mechanistic basis for our findings. Second, we performed a functional and genomic characterization of our MLL-AF9 serial transplantation model to explore mechanisms of disease evolution and clonal selection in AML. Limiting dilution studies demonstrated that serial transplantation results in a reduction in disease latency, dramatic enrichment of leukemia-initiating cells (LIC), and reconfiguration of the LSC hierarchy. While mutations in known AML-associated genes were not linked to disease progression, RNA-sequencing (RNA-Seq) demonstrated that the increase in LIC frequency in serially transplanted leukemias is driven by changes in cell cycle and differentiation. In aggregate, these studies offer insights into the biological mechanisms regulating LSC self-renewal and disease evolution in AML.
89

Probing Single Cell Gene Expression in Tissue Morphogenesis and Angiogenesis

Wang, Shue January 2015 (has links)
The fascinating capability of cellular self-organization during tissue development and repair is a central question in developmental biology and regenerative medicine. Understanding the dynamic morphogenic and regenerative processes of biological tissues will have important implications in biology and medicine. Nevertheless, the elucidation of the cellular self-organization processes is hindered by a lack of effective tools for monitoring the spatiotemporal gene expression distribution and a lack of ability to perturb the self-organization processes in living cells and tissues. Multimodal modularities that allow both single cell perturbation and gene detection are required to enable a new paradigm in the investigation of complex tissue morphogenic processes. To address this critical challenge in the field of developmental and regenerative medicine, we are developing a multimodal gold nanorod-locked nucleic acid (GNR-LNA) composite for single cell gene expression analysis in living cells and tissues at the transcriptional level. Using antisense RNA sequences, we design LNA probes for detecting specific molecular targets in living cells. The LNA probes bind to the GNR spontaneously due to the intrinsic affinity between the GNR and LNA. In close proximity, the fluorescent probes are effectively quenched by the GNR. Therefore, a fluorescent signal is only observed when the specific target thermodynamically displaces the LNA probe from the GNR. Furthermore, the GNR also serves as a transducer for photothermal ablation. Thus, we established a novel modularity for imaging the spatiotemporal gene expression distribution in living cells and tissues. The single cell analysis capability of our techniques enables us to adopt a unique approach to study the tissue regenerative processes during normal development and diseases, and this will have a profound impact on regenerative medicine and disease treatment in future. Moreover, we applied this GNR-LNA probe to explore the endothelial cell mRNA dynamics during capillary morphogenesis. Three different types of cells were identified due to their different roles during endothelial cell capillary-like formation process. Our findings indicated that the endothelial cell behavior is directly related to the Dll4 mRNA expression, and Dll4 expression in ECs determine the cell fate. Our GNR-LNA probe enable us to investigate the correlations between Dll4 mRNA expression and cell behavior during capillary morphogenesis. Experimental results indicated that: (1) When the endothelial cells aggregate, the cells migrate with certain displacement, the Dll4 mRNA expression decreases. (2) When the endothelial cells sprout, the cells migrate with small displacement but the cell shape changes to an ellipse shape, the Dll4 mRNA expression begin to increase. (3) When the endothelial cells elongate and form cell-cell contract with adjacent cells, the Dll4 expression decreased to a certain level and keep stable until the cell activity change to another stage. Furthermore, it has been demonstrated endothelial cells compete for the leader cell position during wound healing, collective cell migration, and tip cell formation during angiogenic process. It has been demonstrated that endothelial cells compete for the tip cell formation through Notch signaling pathway. However, how the mechanical force regulates tip cell formation is still unclear, and if mechanoregulation of tip cell formation through Notch pathway still unknown. Mechanical and chemical regulations of tissue morphogenesis and angiogenesis are being investigated in both in vitro capillary-like network formation assay and in vivo mice retina angiogenesis assay. Here, we investigated the mechanoregulation of mechanotransduction of tissue morphogenesis and angiogenesis using both in vitro endothelial cell tube formation model and in vivo mice retina blood vessel development model. Our results demonstrated that (1) Notch pathway negatively regulates tip cell formation: inhibition of Notch pathway (DAPT) enhances tip cell formation, induces Dll4 and Notch1 activity, activation of Notch pathway (Jag1 peptide) inhibits tip cell formation, suppresses Dll4 and Notch1 activity. (2) Mechanical force negatively regulate tip cell formation: (a) Decrease mechanical force via Rho kinase inhibitor Y-27632, myosin II inhibitor Blebbistatin, or laser ablation, enhances tip cell formation and induces Dll4 activity through mediation of Dll4-Notch1 lateral inhibition, (b) increase mechanical force via traction force inducer Nocodazole and Calyculin A, suppresses tip cell formation and inhibits Dll4 activity through activation of Notch pathway. (3) Mechanical force negatively regulates tip cell formation partially via mediation of Notch pathway. Mechanical force is necessary for tip cell formation and negatively regulate tip/stalk selection via Dll4-Notch1 lateral inhibition. Interruption of mechanical force enhance tip cell formation via suppression of Dll4-Notch1 lateral inhibition, thus resulting the increase of Dll4 expression. Enhance of mechanical force inhibits tip cell formation via activation of Dll4-Notch1 lateral inhibition, thus resulting the decreases of Dll4 expression. All these finding wills have great significance for various biomedical applications, such as tissue engineering, cancer, and drug screening.
90

A Hybrid Electrokinetic Bioprocessor For Single-Cell Antimicrobial Susceptibility Testing

Lu, Yi January 2015 (has links)
Infectious diseases resulting from bacterial pathogens are the most common causes of patient morbidity and mortality worldwide. The rapid identification of the pathogens and their antibiotic resistances is crucial for proper clinical management. However, the standard culture-based diagnostic approach requires a minimum of two days from the initial specimen collection to result reporting. As a consequence, broad-spectrum antibiotics are often prescribed under the worst-case assumption without knowledge of the pathogens or their resistances. The current clinical practice results in improper treatment of the patient and causes the rapid emergence of multi-drug resistant pathogens. A rapid diagnostics system has therefore been developed which performs hybrid electrokinetic sample preparation and volume reduction, for single-cell antimicrobial susceptibility testing (AST). The system combines multiple electrokinetic forces for sample preparation, which reduces the sample volume for over 3 orders of magnitude and minimizes the matrix effects of physiological samples for enhanced sensitivity. The device is integrated with a single-cell AST system with microfluidic confinement and electrokinetic loading to phenotypically determine the bacterial antibiotic resistance at the single-cell level. The applicability of the system has been demonstrated for performing direct AST with urine and blood samples within one hour, enabling rapid infectious disease diagnostics in non-traditional healthcare settings.

Page generated in 0.056 seconds