• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 6
  • 5
  • Tagged with
  • 44
  • 44
  • 29
  • 15
  • 14
  • 14
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Evaluation of Two String Tests for Obtaining Gastric Juice for Culture, Nested-PCR Detection, and Combined Single- and Double-Stranded Conformational Polymorphism Discrimination of Helicobacter Pylori

Ferguson, David A., Jiang, C., Chi, D. S., Laffan, J. J., Li, C., Thomas, E. 01 October 1999 (has links)
We have compared two gastric string tests for obtaining gastric juice for culture of Helicobacter pylori and for nested-PCR detection and PCR-based combined single- and double-stranded conformational polymorphism (SDSCP) discrimination of infecting strains. String test specimens were obtained from one seropositive volunteer for 13 consecutive weeks. The distal 10 cm of each string was suspended in 1 ml saline and quantitatively cultured. An additional nine volunteers with histories of upper-gastrointestinal complaints were given a string test for culture and nested-PCR assay. H. pylori isolates and/or gastric juice from each volunteer were extracted for DNA and analyzed by PCR-based SDSCP. Quantitative culture showed that the Entero-test was four times as sensitive as the Gastro-test but was more prone to contamination by oral flora. However, the two string tests are equally sensitive by PCR assays. Thus, the Gastro-test is more suitable for culture detection of H. pylori, since it is less prone to oral contamination and its shorter length is better tolerated. SDSCP analysis of H. pylori DNA from four PCR-positive volunteers without requiring culture showed four distinct profiles, indicating different infecting strains. SDSCP analysis of strains isolated before and after treatment of one volunteer had the same SDSCP profile, suggesting endogenous reinfection by the same strain.
42

Étude structurale du mode de liaison des protéines Whirly de plantes à l’ADN monocaténaire

Cappadocia, Laurent 12 1900 (has links)
Les plantes doivent assurer la protection de trois génomes localisés dans le noyau, les chloroplastes et les mitochondries. Si les mécanismes assurant la réparation de l’ADN nucléaire sont relativement bien compris, il n’en va pas de même pour celui des chloroplastes et des mitochondries. Or il est important de bien comprendre ces mécanismes puisque des dommages à l’ADN non ou mal réparés peuvent entraîner des réarrangements dans les génomes. Chez les plantes, de tels réarrangements dans l’ADN mitochondrial ou dans l’ADN chloroplastique peuvent conduire à une perte de vigueur ou à un ralentissement de la croissance. Récemment, notre laboratoire a identifié une famille de protéines, les Whirly, dont les membres se localisent au niveau des mitochondries et des chloroplastes. Ces protéines forment des tétramères qui lient l’ADN monocaténaire et qui accomplissent de nombreuses fonctions associées au métabolisme de l’ADN. Chez Arabidopsis, deux de ces protéines ont été associées au maintien de la stabilité du génome du chloroplaste. On ignore cependant si ces protéines sont impliquées dans la réparation de l’ADN. Notre étude chez Arabidopsis démontre que des cassures bicaténaires de l’ADN sont prises en charge dans les mitochondries et les chloroplastes par une voie de réparation dépendant de très courtes séquences répétées (de cinq à cinquante paires de bases) d’ADN. Nous avons également montré que les protéines Whirly modulent cette voie de réparation. Plus précisément, leur rôle serait de promouvoir une réparation fidèle de l’ADN en empêchant la formation de réarrangements dans les génomes de ces organites. Pour comprendre comment les protéines Whirly sont impliquées dans ce processus, nous avons élucidé la structure cristalline d’un complexe Whirly-ADN. Nous avons ainsi pu montrer que les Whirly lient et protègent l’ADN monocaténaire sans spécificité de séquence. La liaison de l’ADN s’effectue entre les feuillets β de sous-unités contiguës du tétramère. Cette configuration maintient l’ADN sous une forme monocaténaire et empêche son appariement avec des acides nucléiques de séquence complémentaire. Ainsi, les protéines Whirly peuvent empêcher la formation de réarrangements et favoriser une réparation fidèle de l’ADN. Nous avons également montré que, lors de la liaison de très longues séquences d’ADN, les protéines Whirly peuvent s’agencer en superstructures d’hexamères de tétramères, formant ainsi des particules sphériques de douze nanomètres de diamètre. En particulier, nous avons pu démontrer l’importance d’un résidu lysine conservé chez les Whirly de plantes dans le maintien de la stabilité de ces superstructures, dans la liaison coopérative de l’ADN, ainsi que dans la réparation de l’ADN chez Arabidopsis. Globalement, notre étude amène de nouvelles connaissances quant aux mécanismes de réparation de l’ADN dans les organites de plantes ainsi que le rôle des protéines Whirly dans ce processus. / Plants must protect the integrity of three genomes located respectively in the nucleus, the chloroplasts and the mitochondria. Although DNA repair mechanisms in the nucleus are the subject of multiple studies, little attention has been paid to DNA repair mechanisms in chloroplasts and mitochondria. This is unfortunate since mutations in the chloroplast or the mitochondrial genome can lead to altered plant growth and development. Our laboratory has identified a new family of proteins, the Whirlies, whose members are located in plant mitochondria and chloroplasts. These proteins form tetramers that bind single-stranded DNA and play various roles associated with DNA metabolism. In Arabidopsis, two Whirly proteins maintain chloroplast genome stability. Whether or not these proteins are involved in DNA repair has so far not been investigated. Our studies in Arabidopsis demonstrate that DNA double-strand breaks are repaired in both mitochondria and chloroplasts through a microhomology-mediated repair pathway and indicate that Whirly proteins affect this pathway. In particular, the role of Whirly proteins would be to promote accurate repair of organelle DNA by preventing the repair of DNA double-strand breaks by the microhomology-dependant pathway. To understand how Whirly proteins mediate this function, we solved the crystal structure of Whirly-DNA complexes. These structures show that Whirly proteins bind single-stranded DNA with low sequence specificity. The DNA is maintained in an extended conformation between the β-sheets of adjacent protomers, thus preventing spurious annealing with a complementary strand. In turn, this prevents formation of DNA rearrangements and favors accurate DNA repair. We also show that upon binding long ssDNA sequences, Whirly proteins assemble into higher order structures, or hexamers of tetramers, thus forming spherical particles of twelve nanometers in diameter. We also demonstrate that a lysine residue conserved among plant Whirly proteins is important for the stability of these higher order structures as well as for cooperative binding to DNA and for DNA repair. Overall, our study elucidates some of the mechanisms of DNA repair in plant organelles as well as the roles of Whirly proteins in this process.
43

Étude structurale du mode de liaison des protéines Whirly de plantes à l’ADN monocaténaire

Cappadocia, Laurent 12 1900 (has links)
Les plantes doivent assurer la protection de trois génomes localisés dans le noyau, les chloroplastes et les mitochondries. Si les mécanismes assurant la réparation de l’ADN nucléaire sont relativement bien compris, il n’en va pas de même pour celui des chloroplastes et des mitochondries. Or il est important de bien comprendre ces mécanismes puisque des dommages à l’ADN non ou mal réparés peuvent entraîner des réarrangements dans les génomes. Chez les plantes, de tels réarrangements dans l’ADN mitochondrial ou dans l’ADN chloroplastique peuvent conduire à une perte de vigueur ou à un ralentissement de la croissance. Récemment, notre laboratoire a identifié une famille de protéines, les Whirly, dont les membres se localisent au niveau des mitochondries et des chloroplastes. Ces protéines forment des tétramères qui lient l’ADN monocaténaire et qui accomplissent de nombreuses fonctions associées au métabolisme de l’ADN. Chez Arabidopsis, deux de ces protéines ont été associées au maintien de la stabilité du génome du chloroplaste. On ignore cependant si ces protéines sont impliquées dans la réparation de l’ADN. Notre étude chez Arabidopsis démontre que des cassures bicaténaires de l’ADN sont prises en charge dans les mitochondries et les chloroplastes par une voie de réparation dépendant de très courtes séquences répétées (de cinq à cinquante paires de bases) d’ADN. Nous avons également montré que les protéines Whirly modulent cette voie de réparation. Plus précisément, leur rôle serait de promouvoir une réparation fidèle de l’ADN en empêchant la formation de réarrangements dans les génomes de ces organites. Pour comprendre comment les protéines Whirly sont impliquées dans ce processus, nous avons élucidé la structure cristalline d’un complexe Whirly-ADN. Nous avons ainsi pu montrer que les Whirly lient et protègent l’ADN monocaténaire sans spécificité de séquence. La liaison de l’ADN s’effectue entre les feuillets β de sous-unités contiguës du tétramère. Cette configuration maintient l’ADN sous une forme monocaténaire et empêche son appariement avec des acides nucléiques de séquence complémentaire. Ainsi, les protéines Whirly peuvent empêcher la formation de réarrangements et favoriser une réparation fidèle de l’ADN. Nous avons également montré que, lors de la liaison de très longues séquences d’ADN, les protéines Whirly peuvent s’agencer en superstructures d’hexamères de tétramères, formant ainsi des particules sphériques de douze nanomètres de diamètre. En particulier, nous avons pu démontrer l’importance d’un résidu lysine conservé chez les Whirly de plantes dans le maintien de la stabilité de ces superstructures, dans la liaison coopérative de l’ADN, ainsi que dans la réparation de l’ADN chez Arabidopsis. Globalement, notre étude amène de nouvelles connaissances quant aux mécanismes de réparation de l’ADN dans les organites de plantes ainsi que le rôle des protéines Whirly dans ce processus. / Plants must protect the integrity of three genomes located respectively in the nucleus, the chloroplasts and the mitochondria. Although DNA repair mechanisms in the nucleus are the subject of multiple studies, little attention has been paid to DNA repair mechanisms in chloroplasts and mitochondria. This is unfortunate since mutations in the chloroplast or the mitochondrial genome can lead to altered plant growth and development. Our laboratory has identified a new family of proteins, the Whirlies, whose members are located in plant mitochondria and chloroplasts. These proteins form tetramers that bind single-stranded DNA and play various roles associated with DNA metabolism. In Arabidopsis, two Whirly proteins maintain chloroplast genome stability. Whether or not these proteins are involved in DNA repair has so far not been investigated. Our studies in Arabidopsis demonstrate that DNA double-strand breaks are repaired in both mitochondria and chloroplasts through a microhomology-mediated repair pathway and indicate that Whirly proteins affect this pathway. In particular, the role of Whirly proteins would be to promote accurate repair of organelle DNA by preventing the repair of DNA double-strand breaks by the microhomology-dependant pathway. To understand how Whirly proteins mediate this function, we solved the crystal structure of Whirly-DNA complexes. These structures show that Whirly proteins bind single-stranded DNA with low sequence specificity. The DNA is maintained in an extended conformation between the β-sheets of adjacent protomers, thus preventing spurious annealing with a complementary strand. In turn, this prevents formation of DNA rearrangements and favors accurate DNA repair. We also show that upon binding long ssDNA sequences, Whirly proteins assemble into higher order structures, or hexamers of tetramers, thus forming spherical particles of twelve nanometers in diameter. We also demonstrate that a lysine residue conserved among plant Whirly proteins is important for the stability of these higher order structures as well as for cooperative binding to DNA and for DNA repair. Overall, our study elucidates some of the mechanisms of DNA repair in plant organelles as well as the roles of Whirly proteins in this process.
44

Chronic hepatitis C: Liver disease manifestations with regard to respective innate immunity receptors gene polymorphisms / Chronische Hepatitis C: Manifestationen der Lebererkrankung in Bezug auf die relevanten Genpolymorphismen des angeborenen Immunsystems

Askar, Eva 04 July 2011 (has links)
Etwa 3% der Weltbevölkerung sind von dem Hepatitis-C-Virus-Infektion betroffen. Phänotyp der HCV-induzierten Lebererkrankung variiert stark von einem Patienten zum anderen. Die Wahrnehmung der viralen doppelsträngigen RNA (dsRNA) und einzelsträngigen RNA (ssRNA) durch den Toll-like-Rezeptor 3 (TLR3) bzw. TLR7 scheinen an der Früherkennung der Pathogene und an der Wirtsantwort auf viraler Infektion beteiligt zu sein. Darüber hinaus ist die membran-assoziierte Form des Endotoxin-Rezeptor-Bestandteils CD14 (mCD14) mit TLR3 in Intrazellulärräumen kolokalisiert und erweitert die dsRNA-Erkennung und TLR3-Signalleitung. Die vorliegende Arbeit analysiert epidemiologische und klinische Daten von Patienten kaukasischer Abstammung mit einer chronischen Hepatitis C in Bezug auf bestimmte Einzellnukleotidpolymorphismen (SNPs) mit relevanten minor allele frequencies (MAFs) in Genen, die für obengenannte Rezeptoren kodieren. Es wurde keine Assoziation von dem TLR3-Promotor-Polymorphism rs5743305 (T/A) mit TLR3-Genexpression gefunden, weder in peripheren mononukleären Zellen des Blutes (PBMCs) noch in der Leber; keine weitere Korrelation mit epidemiologischen und klinischen Parametern der chronischen Erkrankung waren zu beobachten. Andererseits, T-homozygote Patienten am rs3775291-(C/T)-Polymorphismus (der in Exon 4 lokalisierter nicht-synonymer SNP) zeigen Tendenz zu einer höheren TLR3-Genexpression in der Leber. Außerdem, unter HCV-subtyp-1a-infizierten Patienten sind keine T-Homozygoten zu finden. Im Unterschied zur Lage bei alkoholischer Lebererkrankung wurde in chronischen Hepatitis-C-Patienten keine Assoziation zwischen den Fibrosegrad und CD14-Gen-C-159T-Polymorphismus gefunden. Bei T-homozygoten Patienten wurden jedoch häufiger portale lymphoide Aggregaten gefunden als bei C-Allele-Trägern. Außerdem das Vorhandensein von portalen lymphoiden Aggregaten korrelierte eng mit der Leberentzündung und mit Gallengangsläsionen. Am Ende wurde der funktionelle nicht-synonyme SNP in Exon 3 des X-gekoppelten TLR7 Gens, rs179008/Gln11Leu, untersucht. Die Analyse war auf homo- und hemizygoten Personen, die mittels Allelspezifischentranskriptquantifizierung (ASTQ) in heterozygoten weiblichen Personen eingeordnet wurden, eingeschränkt. Es zeigte sich dabei ein individueller verzerrter Mosaizismus in PBMCs. Das variante T-Allel war nur mit der Anwesenheit der portalen lymphoiden Aggregaten assoziiert. Hepatische Viruslast und Expression der Gene, die bekannterweise bei einer chronischer HCV-Infektion induziert sind, unterschieden sich zwischen Wildtyp- und Variantallelträger nicht. Jedoch eine signifikant niedrigere Expression der interleukin-29 (IL-29)/lambda1 interferon (IFN-λ1) und beider Untereinheiten seines Rezeptors (IL-10 Rβ and IL-28Rα) war bei T-homo- und hemizygoten Patienten zu beobachten. Diese Tatsache könnte eher eine Auswirkung auf die Ansprechbarkeit auf zukünftige IFN- λ-basierte Therapie haben, als auf eine Vorhersage des Ausgangs der gängigen IFN-α-basierten Therapie.

Page generated in 0.0818 seconds