• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and Simulation Assessment of Semiconductor Production System Enhancements for Fast Cycle Times

Stubbe, Kilian 08 March 2010 (has links) (PDF)
Long cycle times in semiconductor manufacturing represent an increasing challenge for the industry and lead to a growing need of break-through approaches to reduce it. Small lot sizes and the conversion of batch processes to mini-batch or single-wafer processes are widely regarded as a promising means for a step-wise cycle time reduction. Our analysis with discrete-event simulation and queueing theory shows that small lot size and the replacement of batch tools with mini-batch or single wafer tools are beneficial but lot size reduction lacks persuasive effectiveness if reduced by more than half. Because the results are not completely convincing, we develop a new semiconductor tool type that further reduces cycle time by lot streaming leveraging the lot size reduction efforts. We show that this combined approach can lead to a cycle time reduction of more than 80%.
2

Development and Simulation Assessment of Semiconductor Production System Enhancements for Fast Cycle Times

Stubbe, Kilian 29 January 2010 (has links)
Long cycle times in semiconductor manufacturing represent an increasing challenge for the industry and lead to a growing need of break-through approaches to reduce it. Small lot sizes and the conversion of batch processes to mini-batch or single-wafer processes are widely regarded as a promising means for a step-wise cycle time reduction. Our analysis with discrete-event simulation and queueing theory shows that small lot size and the replacement of batch tools with mini-batch or single wafer tools are beneficial but lot size reduction lacks persuasive effectiveness if reduced by more than half. Because the results are not completely convincing, we develop a new semiconductor tool type that further reduces cycle time by lot streaming leveraging the lot size reduction efforts. We show that this combined approach can lead to a cycle time reduction of more than 80%.

Page generated in 0.1297 seconds