Spelling suggestions: "subject:"singular curve"" "subject:"cingular curve""
1 |
Nombre de points rationnels des courbes singulières sur les corps finis / Number of rational points on singular curves over finite fieldsIezzi, Annamaria 06 July 2016 (has links)
On s'intéresse, dans cette thèse, à des questions concernant le nombre maximum de points rationnels d'une courbe singulière définie sur un corps fini, sujet qui, depuis Weil, a été amplement abordé dans le cas lisse. Cette étude se déroule en deux temps. Tout d'abord on présente une construction de courbes singulières de genres et corps de base donnés, possédant un grand nombre de points rationnels : cette construction, qui repose sur des notions et outils de géométrie algébrique et d'algèbre commutative, permet de construire, en partant d'une courbe lisse X, une courbe à singularités X', de telle sorte que X soit la normalisée de X', et que les singularités ajoutées soient rationnelles sur le corps de base et de degré de singularité prescrit. Ensuite, en utilisant une approche euclidienne, on prouve une nouvelle borne sur le nombre de points fermés de degré deux d'une courbe lisse définie sur un corps fini.La combinaison de ces résultats, à priori indépendants, permet notamment d'étudier le problème de savoir quand la borne d'Aubry-Perret, analogue de la borne de Weil dans le cas singulier, est atteinte. Cela nous amène de façon naturelle à l'étude des propriétés des courbes maximales et, lorsque la cardinalité du corps de base est un carré, à l'analyse du spectre des genres de ces dernières. / In this PhD thesis, we focus on some issues about the maximum number of rational points on a singular curve defined over a finite field. This topic has been extensively discussed in the smooth case since Weil's works. We have split our study into two stages. First, we provide a construction of singular curves of prescribed genera and base field and with many rational points: such a construction, based on some notions and tools from algebraic geometry and commutative algebra, yields a method for constructing, given a smooth curve X, another curve X' with singularities, such that X is the normalization of X', and the added singularities are rational on the base field and with the prescribed singularity degree. Then, using a Euclidian approach, we prove a new bound for the number of closed points of degree two on a smooth curve defined over a finite field.Combining these two a priori independent results, we can study the following question: when is the Aubry-Perret bound (the analogue of the Weil bound in the singular case) reached? This leads naturally to the study of the properties of maximal curves and, when the cardinality of the base field is a square, to the analysis of the spectrum of their genera.
|
Page generated in 0.0723 seconds