Spelling suggestions: "subject:"singular integral equations"" "subject:"cingular integral equations""
11 |
Mixed-mode Fracture Analysis Of Orthotropic Fgm Coatings Under Mechanical And Thermal LoadsIlhan, Kucuk Ayse 01 September 2007 (has links) (PDF)
In this study, it is aimed to investigate the mixed-mode fracture behavior of orthotropic functionally graded material (FGM) coatings bonded to a homogeneous substrate through a homogeneous bond-coat. Analytical and computational methods are used to solve the embedded cracking problems under mechanical or thermal loading conditions. It is assumed that the material property gradation of the FGM coating is in the thickness direction and cracks are parallel to the boundaries. The principal axes of orthotropy are parallel and perpendicular to the boundaries. A single embedded crack in the orthotropic FGM coating is investigated analytically assuming that crack surfaces are subjected to either uniform normal or uniform shear stresses. Using Fourier transformations, the problem is reduced to a couple of singular integral equations that are solved numerically to obtain the mixed-mode stress intensity factors, energy release rate and crack opening displacements. To investigate the analytically untractable problems without restrictive assumptions, a computational approach is employed. The adopted computational approach is based on finite element method and displacement correlation technique. Using the computational approach, fracture parameters are obtained considering single and periodic embedded cracking conditions in the orthotropic FGM coatings under mechanical or thermal loads. The results obtained in this study show the effects of material nonhomogeneity, material orthotropy and geometric variables on the fracture behavior of the structure.
|
12 |
Frictionless Double Contact Problem For An Axisymmetric Elastic Layer Between An Elastic Stamp And A Flat Support With A Circular HoleMert, Oya 01 April 2011 (has links) (PDF)
This study considers the elastostatic contact problem of a semi-infinite cylinder. The cylinder is compressed against a layer lying on a rigid foundation. There is a sharp-edged circular hole in the middle of the foundation. It is assumed that all the contacting surfaces are frictionless and only compressive normal tractions can be transmitted through the interfaces. The contact along interfaces of the elastic layer and the rigid foundation forms a circular area of which outer diameter is unknown. The problem is converted into the singular integral equations of the second kind by means of Hankel and Fourier integral transform techniques. The singular integral equations are then reduced to a system of linear algebraic equations by using Gauss-Lobatto and Gauss-Jacobi integration formulas. This system is then solved numerically. In this study, firstly, the extent of the contact area between the layer and foundation are evaluated. Secondly, contact pressure between the cylinder and layer and contact pressure between the layer and foundation are calculated for various material pairs. Finally, stress intensity factor on the edge of the cylinder and in the end of the sharp-edged hole are calculated.
|
13 |
Mixed-mode Fracture Analysis Of Orthotropic Functionally Graded MaterialsSarikaya, Duygu 01 November 2005 (has links) (PDF)
Functionally graded materials processed by the thermal spray techniques such as electron beam physical vapor deposition and plasma spray forming are known to have an orthotropic structure with reduced mechanical properties. Debonding related failures in these types of material systems occur due to embedded cracks that are perpendicular to the direction of the material property gradation. These cracks are inherently under mixed-mode loading and fracture analysis requires the extraction of the modes I and II stress intensity factors. The present study aims at developing semi-analytical techniques to study embedded crack problems in graded orthotropic media under various boundary conditions. The cracks are assumed to be aligned parallel to one of the principal axes of orthotropy. The problems are formulated using the averaged constants of plane orthotropic elasticity and reduced to two coupled integral equations with Cauchy type dominant singularities. The equations are solved numerically by adopting an expansion - collocation technique. The main results of
the analyses are the mixed mode stress intensity factors and the energy release rate as functions of the material nonhomogeneity and orthotropy parameters. The effects of
the boundary conditions on the mentioned fracture parameters are also duly discussed.
|
14 |
Local theory of a collocation method for Cauchy singular integral equations on an intervalJunghanns, P., Weber, U. 30 October 1998 (has links)
We consider a collocation method for Cauchy singular integral equations on the interval
based on weighted Chebyshev polynomials , where the coefficients of the operator are
piecewise continuous. Stability conditions are derived using Banach algebra methods,
and numerical results are given.
|
15 |
Thermal Barrier Effect, Non-Fourier Effect and Inertia Effect on a Cracked Plate under Thermal Shock Loading / Effet de barrière thermique, effet non-Fourier et effet d'inertie sur une plaque fissurée sous chargement en choc thermiqueLi, Wei 29 January 2016 (has links)
Les chocs thermiques provoquent, en général, l’endommagement et la fissuration des matériaux. Ces phénomènes sont observés, par exemple, dans le revêtement de barrière thermique pour les moteurs des turbines, le traitement des surfaces ou la soudure par laser etc. Plusieurs travaux de recherche ont été réalisés au cours des dernières décennies dans l’objectif d’améliorer les performances thermiques et/ou mécaniques des matériaux sous chargement thermique. L’étude des dommages et de la fissuration des matériaux provoqués par les chocs thermiques, tels que le décollement des interfaces et de décohésion de revêtements, a reçu également une attention considérable par les chercheurs. La majorité de ces travaux utilisent les théories classiques, tels que la loi de Fourier de conduction thermique et l'hypothèse de quasi-statique. Malheureusement ces théories ne sont pas adaptées dans le cas de charges extrêmes provoqués par le choc thermique et dans le cas des matériaux micro-fissurés. En conséquence, les théories conventionnelles doivent être enrichies.L'objectif de la thèse est de montrer le rôle crucial des termes non Fourier et les termes inertiels dans le cas de choc thermique sous conditions sévères et dans le cas où les fissures sont petites. Pour cela nous avons mené des études sur deux structures particulières soumises à des chocs thermiques. Chaque structure contient une fissure parallèle au bord libre de la structure située au voisinage de ce dernier. L’influence de la présence de fissure sur la conductivité thermique est prise en compte. Nous avons utilisé la théorie Hyperbolique de transfert de chaleur par conduction pour les champs thermique et mécanique à la place de la théorie traditionnelle classique de Fourier. Pour mener cette étude, nous avons utilisé les Transformées de Laplace et de Fourier aux équations de mouvement et à l’équation de transfert de chaleur. En s’intéressant en particulier aux champs de contrainte au voisinage de la pointe de fissure et aux facteurs d'intensité de contrainte dynamiques. Le problème se ramène à la résolution d’un système d'équations intégrales singulières dans l'espace de Laplace-Fourier. On utilise une méthode d'intégration numérique pour obtenir les différents champs. Nous résolvons ensuite un système d'équations algébriques linéaires. En effectuant des inversions numériques des transformées, nous obtenons les champs de contrainte de température et les facteurs d'intensité de contrainte dynamiques dans le domaine temporel.Les résultats numériques montrent que la conductivité thermique du milieu est affectée par l’ouverture de la fissure ce qui perturberait fortement le champ de température ainsi que l'amplitude des facteurs d'intensité de contrainte dynamiques. Les amplitudes sont supérieures à celles obtenues à partir de la théorie classique de Fourier ainsi que dans le cadre de l'hypothèse quasi-statique. On constate également qu’elles oscillent au cours du temps. La prise en compte simultanément de l’influence de la fissure sur la conductivité thermique, de l'effet non-Fourier ainsi que les effetsIVd'inertie induit un couplage entre les trois phénomènes qui rendrait le problème de choc thermique très complexe. L'effet de barrière thermique induit par la fissure affecte d’une manière significative les champs de température et des contraintes. Les effets d’inertie, et des termes non-Fourier joueraient également un rôle non négligeable lorsque la longueur de la fissure est petite. Comme dans de nombreux problèmes d'ingénierie, l'initiation et la propagation des micro-fissures sont des mécanismes dont il faut tenir compte dans les prévisions de la rupture des structures. Ces effets non conventionnels ne sont plus négligeables et doivent être inclus dans l'analyse de la fracture des structures soumises à des chocs thermiques. / Thermal shock problems occur in many engineering materials and elements, which are used in high temperature applications such as thermal barrier coatings (TBCs), solid propellant of rocket-engine, pulsed-laser processing of materials, and so on. The thermal shock resistance performances and the thermal shock damages of materials, especially the interface debonding and spallation of coatings, have received considerable attention in both analysis and design. Some conventional theories, such as the Fourier’s law of thermal conduction and the quasi-static assumption of the thermoelastic body, may no longer be appropriate because of the extreme loads provoked by the thermal shock. Therefore, these conventional theories need to be enriched or revised.The objective of this thesis is to develop the solutions of the transient temperature field and thermal stresses around a partially insulated crack in a thermoelastic strip under thermal shock loading. The crack lies parallel to the heated traction free surface. The thermal conductivity of the crack gap is taken into account. Hyperbolic heat conduction theory is used in solving the temperature field instead of the traditional Fourier thermal conduction theory. Equations of motion are applied to obtain the stress fields and the dynamic stress intensity factors of the crack. The Laplace and Fourier transforms are applied to solve the thermal-elastic governing equations such that the mixed boundary value problems are reduced to solving a singular integral equations system in Laplace-Fourier space. The numerical integration method is applied to get the temperature field and stress fields, respectively. The problems are then solved numerically by converting the singular integral equations to a linear algebraic equations system. Finally, numerical inversions of the Laplace transform are performed to obtain the temperature field and dynamic stress intensity factors in the time domain.Numerical results show that the thermal conductivity of the crack gap strongly affects the uniformity of the temperature field and consequently, the magnitude of the dynamic stress intensity factors of the crack. The stress intensity factors would have higher amplitude and oscillating feature comparing to those obtained under the conventional Fourier thermal conduction and quasi-static hypotheses. It is also observed that the interactions of the thermal conductivity of the crack gap, the non-Fourier effect and the inertia effects would make the dynamic thermal shock problem more complex. The magnitude of the thermal barrier, non-Fourier and inertia effects is estimated for some practical cases.
|
Page generated in 0.1333 seconds