Spelling suggestions: "subject:"singular potentials"" "subject:"cingular potentials""
1 |
Generalized Titchmarsh-Weyl functions and super singular perturbationsNeuner, Christoph January 2015 (has links)
In this thesis we study certain singular Sturm-Liouville differential expressions from an operator theoretic point of view.In particular we are interested in expressions that involve strongly singular potentials as introduced by Gesztesy and Zinchenko.On the ODE side, analyzing these expressions involves the so-called $m$-functions, often generalized Nevanlinna functions, who encapsulate spectral information of the underlying problem.The aim of the two papers in this thesis is to further understanding on the operator theory side.In the first paper, we use a model for super singular perturbations to describe a family of induced self-adjoint realizations of a perturbed Schr\"o\-din\-ger operator, i.e., with a potential of the form $c/x^2 + q$ where $q$ is a perturbation.Following the unperturbed example of Kurasov and Luger, we find that the so-called $Q$-function appearing in this approach is in good agreement with the above named $m$-function.Furthermore, we show that the operator model can be chosen such that $Q \equiv m$.In the second paper, we present a negative result in this area, namely that the supersingular perturbations model cannot be used for all strongly singular potentials.For a potential with a stronger singularity at the origin, namely $1/x^4$, we discuss the asymptotic behaviour of the Weyl solution at zero.It turns out that this function cannot be regularized appropriately and the operator model breaks down.
|
2 |
Mécanique quantique avec un principe d'incertitude généralisé. Application à l'interaction 1/r²/Quantum mechanics with a generalized uncertainty principle. Application to the 1/r² interactionBouaziz, Djamil 31 July 2009 (has links)
Nous présentons les outils fondamentaux du formalisme de la mécanique quantique non relativiste basée sur un principe dincertitude généralisé, impliquant lexistence dune longueur élémentaire. En considérant deux systèmes simples, à savoir le potentiel delta de Dirac à 1 dimension et le potentiel de Coulomb à 3 dimensions, nous illustrons comment on peut résoudre léquation de Schrödinger et extraire le spectre dénergie, analytiquement ou perturbativement, dans ce formalisme. Nous appliquons ce formalisme au potentiel singulier -α/r²(α > 0) à 3 dimensions, qui nécessite une régularisation aux petites distances en mécanique quantique ordinaire. Nous étudions la solution de léquation de Schrödinger dans lespace des impulsions. Nous montrons que la longueur élémentaire régularise le potentiel naturellement. Le spectre dénergie est calculé comme dans le cas des potentiels réguliers, sans introduction dun paramètre arbitraire, et le système possède un état fondamental avec une énergie finie. Nous généralisons notre étude en étudiant léquation de Schrödinger déformée pour le potentiel −α/r² à N dimensions, pour toutes les valeurs du nombre quantique du moment orbital l. La solution analytique est une fonction de Heun qui se réduit à une fonction hypergéométrique dans certains cas particuliers. Nous appliquons nos résultats à 2 dimensions spatiales au problème dun dipôle dans le champ dune corde cosmique. Nous étudions en détail lexistence des états liés du système pour différentes valeurs de la constante de couplage, qui d´epend de langle (θ) entre la corde cosmique et le dipôle. Nous montrons en particulier que la corde cosmique ne peut pas lier le dipôle si θ ≤ π/4. Nous éxaminons également le nombre des états liés du potentiel −α/x² à 1 dimension dans ce nouveau formalisme de la mécanique quantique. Les résultats sont en accord qualitatif avec ceux de la mécanique quantique ordinaire. Nous concluons que dans une théorie quantique non relativiste incluant une longueur élémentaire, celle-ci représenterait une dimension intrinsèque du système étudié. Le formalisme de cette nouvelle version de la mécanique quantique serait utile pour résoudre des problèmes caractérisés par des anomalies dues à des singularités aux petites distances./We discuss the fundamental tools of the formalism of nonrelativistic quantum mechanics based on a generalized uncertainty principle, implying the existence of a minimal length. We consider two simple systems, namely the one-dimensional Dirac delta potential and the three-dimensional Coulomb potential to illustrate how the Schrödinger equation and the eigenvalue problem in the presence of the minimal length can be solved exactly or perturbatively. We apply this formalism to the singular potential −α/r² (α > 0), whose short distance behavior must be regularized in ordinary quantum mechanics. We solve analytically the three-dimensional Schrödinger equation in momentum space. We show that the presence of a minimal length in the formalism regularizes the potential in a natural way. The energy spectrum is calculated as in the case of regular potentials, without introducing any arbitrary parameters, and the system possesses a finite energy in the ground state. We generalize our study by solving analytically the deformed Schrödinger equation for the potential −α/r² in N-dimensions, and for all values of orbital momentum quantum number l. The solution is a Heun function which reduces to a hypergeometric function in some special cases. We apply our results in two spatial dimensions to the problem of a dipole in a cosmic string background. We study in detail the existence of bound states of the system for all values of the coupling constant, depending on the angle (θ between the cosmic string and the dipole. We show in particular that the cosmic string cannot bind the dipole if θ ≤ π/4. We investigate also the number of bound states for the one-dimensional −α/x² potential in this new formalism of quantum mechanics. The results are in qualitative agreement with those of ordinary quantum mechanics. We conclude that the minimal length in a non relativistic quantum theory may represent an intrinsic dimension of the system under study. The formalism of this deformed version of quantum mechanics would be useful to solve problems characterized by anomalies dues to singularities at small distances.
|
3 |
Non-Perturbative Effective Field Theories in Strong-Interaction PhysicsLong, Bingwei January 2008 (has links)
The idea of effective field theory (EFT) was developed decades ago in low-energy strong-interaction - hadronic and nuclear - physics. After introducing chiral perturbation theory (ChPT), we focus in this dissertation on three non-perturbative cases that standard ChPT cannot deal with by itself. First, we investigate pion-nucleon (πN) scattering around the delta resonance, which is an important non-perturbative feature of low-energy nuclear physics. We show that in order to describe πN scattering around the delta peak, a power counting is necessary that goes beyond the power counting of ChPT. Using this new power counting, we calculate the phase shifts in the spin-3/2 P-wave channel up to next-to-next-to-leading order (NNLO). Second, in order to clarify the issue of renormalization and power counting of nucleon-nucleon potentials, we use a toy model to illustrate how to build effective theories for singular potentials, which some nuclear potentials belong to. We consider a central attractive 1/r² potential perturbed by a 1/r⁴ correction. We show that leading-order counterterms are needed in all partial waves where the potential overcomes the centrifugal barrier, and that the additional counterterms at next-to-leading order are the ones expected on the basis of dimensional analysis. Finally, we illustrate how non-perturbative EFT can be used to study neutron-antineutron oscillation inside the deuteron. We build an EFT for a model-independent, systematic study of two-unit baryon-number (|ΔB| = 2) violation in the context of nuclear physics. To cope with the non-perturbative deuteron structure, we apply the pionless version of this EFT to calculate deuteron decay. The decay width is obtained up to next-to-leading order. We show that the contribution of direct two-nucleon annihilation to the deuteron decay appears only at NNLO.
|
4 |
Existência e propriedades qualitativas para dois tipos de EDP's com potenciais singulares / Existence and qualitative properties for two types of PDE's with singular potentialMesquita, Cláudia Aline Azevedo dos Santos, 1984- 24 August 2018 (has links)
Orientador: Lucas Catão de Freitas Ferreira / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-24T06:33:09Z (GMT). No. of bitstreams: 1
Mesquita_ClaudiaAlineAzevedodosSantos_D.pdf: 1141685 bytes, checksum: a65a24d1917c5f998314d01970bb86e3 (MD5)
Previous issue date: 2013 / Resumo: Nesta tese, estudamos dois tipos de EDPs com potenciais singulares críticos, a saber, uma equação elíptica com operador poliharmônico e a equação do calor linear. Para a primeira, pesquisamos existência e propriedades qualitativas das soluções no espaço $\mathcal{H}_{k,\vec{\alpha}}$ que é uma soma de espaços $L^{\infty}$ com peso, o qual parece ser um espaço mínimo para o tipo de potencial singular considerado. Investigamos um conceito de simetria para soluções que estende o de simetria radial e satisfaz uma ideia de invariância em torno das singularidades. Para a segunda, uma estratégia baseada na transformada de Fourier é empregada para obter resultados de boa-colocação global e comportamento assintótico de soluções, sem hipóteses de pequenez e sem utilizar a desigualdade de Hardy. Em particular, obtemos boa-colocação de soluções para o caso do potencial monopolar $V(x)=\frac{\lambda}{\left\vert x\right\vert ^{2}}$ com $\left\vert \lambda\right\vert <\lambda_{\ast}=\frac{(n-2)^{2}}{4}$. Este valor limiar é o mesmo obtido em resultados de boa-colocação global em $L^2$ que utilizam desigualdades de Hardy e estimativas de energia. Desde que não existe uma relação de inclusão entre $L^{2}$ e $PM^{k}$, nossos resultados indicam que $\lambda_{\ast}$ é intrínseco da EDP e independe de uma particular abordagem. Palavras-chave: Equações elípticas, equação do calor, potencial singular, existência, simetria, autossimilaridade, comportamento assintótico / Abstract: In this thesis, we study two types of PDEs with critical singular potentials, namely, an elliptic equation with polyharmonic operator and the linear heat equation. For the first, we obtain existence and qualitative properties of solutions in $\mathcal{H}_{k,\vec{\alpha}}$-spaces which are a sum of weighted $L^{\infty}$-spaces, and seem to be a minimal framework for the potential profile of interest. We investigate a concept of symmetry for solutions which extends radial symmetry and carries out an idea of invariance around singularities. For the second, a strategy based on the Fourier transform is employed to obtain results of global well-posedness and asymptotic behavior of solutions, without smallness hypotheses and without using Hardy inequality. In particular, well-posedness of solutions is obtained for the case of the monopolar potential $V(x)=\frac{\lambda}{\left\vert x\right\vert ^{2}}$ with $\left\vert \lambda\right\vert <\lambda_{\ast}=\frac{(n-2)^{2}}{4}$. This threshold value is the same one obtained for the global well-posedness of $L^{2}$-solutions by means of Hardy inequalities and energy estimates. Since there is no inclusion relation between $L^{2}$ and $PM^{k}$, our results indicate that $\lambda_{\ast}$ is intrinsic of the PDE and independent of a particular approach. Keywords: Elliptic equation, heat equation, singular potential, existence, symmetry, self-similarity, asymptotic behavior / Doutorado / Matematica / Doutora em Matemática
|
5 |
Equações de Schrödinger quaselineares com potenciais singulares ou se anulando no infinitoCarvalho, Gilson Mamede de 19 July 2016 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-15T11:35:55Z
No. of bitstreams: 1
arquivototal.pdf: 1290749 bytes, checksum: 9377b99ec1efcaa5be2f62cc2aae83ac (MD5) / Made available in DSpace on 2017-08-15T11:35:55Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1290749 bytes, checksum: 9377b99ec1efcaa5be2f62cc2aae83ac (MD5)
Previous issue date: 2016-07-19 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we study existence of standing wave solution for a class of quasilinear
Schrödinger equations involving potentials that may be singular at the origin or
vanishing at infinity. For dimensions bigger than two, we consider nonlinearities with
subcritical growth. In dimension two, we work with nonlinearities having exponential
critical growth. To obtain our results, we have used variational techniques, more
specifically, a version of the Mountain Pass Theorem, a regularity result of Brézis-Kato
type, arguments of symmetrical criticality principle type, Moser iteration method and
a Trudinger-Moser type inequality. / Neste trabalho, estudamos existência de solução do tipo onda estacionária para uma
classe de equações de Schrödinger quaselineares, envolvendo pontencias que podem ser
singular na origem ou que podem se anular no infinito. Para dimensões maiores que
dois, consideramos não-linearidades com crescimento subcrítico. Em dimensão dois,
trabalhamos com não linearidades possuindo crescimente crítico exponencial. Para a
obtenção de nossos resultados, usamos técnicas variacionais, mais especificamente, uma
versão do Teorema do Passo da Montanha, um resultado de regularidade do tipo Brézis-
Kato, argumentos do tipo princípio da criticalidade simétrica, método de iteração de
Moser e uma desigualdade do tipo Trudinger-Moser.
|
6 |
Alguns problemas elípticos não homogêneos via transformada de Fourier / Some non-homogeneous elliptic problems via Fourier transformCastañeda Centurión, Nestor Felipe, 1976- 04 October 2015 (has links)
Orientador: Lucas Catão de Freitas Ferreira / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-27T04:26:31Z (GMT). No. of bitstreams: 1
CastanedaCenturion_NestorFelipe_D.pdf: 1063498 bytes, checksum: bbaaad01ffead1389f469e88505aada5 (MD5)
Previous issue date: 2015 / Resumo: Por apresentar basicamente fórmulas, o Resumo, na íntegra, poderá ser visualizado no texto completo da tese digital / Abstract: The complete Abstract is available with the full electronic document / Doutorado / Matematica / Doutor em Matemática
|
Page generated in 0.2817 seconds