Spelling suggestions: "subject:"espaços dde orlicz"" "subject:"espaços dde halicz""
1 |
Equações quasilineares multivalentesSantos, Jefferson Abrantes dos 10 June 2011 (has links)
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2011. / Submitted by Jaqueline Ferreira de Souza (jaquefs.braz@gmail.com) on 2011-09-13T13:29:16Z
No. of bitstreams: 1
2011_JeffersonAbrantesdosSantos.pdf: 813794 bytes, checksum: ea91ddcbef8c3bcda15a68dafab0e5c8 (MD5) / Approved for entry into archive by Jaqueline Ferreira de Souza(jaquefs.braz@gmail.com) on 2011-09-13T13:30:57Z (GMT) No. of bitstreams: 1
2011_JeffersonAbrantesdosSantos.pdf: 813794 bytes, checksum: ea91ddcbef8c3bcda15a68dafab0e5c8 (MD5) / Made available in DSpace on 2011-09-13T13:30:57Z (GMT). No. of bitstreams: 1
2011_JeffersonAbrantesdosSantos.pdf: 813794 bytes, checksum: ea91ddcbef8c3bcda15a68dafab0e5c8 (MD5) / Neste trabalho estudamos existência de solução não trivial para uma classe de
problemas quasilineares multivalentes do tipo
L(u) ∈ ∂u F(x; u) em Ω,
onde Ω ∁ RN é um domínio, N ≥ 2 e ∂u F(x; u) é o gradiente generalizado de F(x; t)
com relação a variável t. As principais ferramentas utilizadas são Métodos Variacionais para funcionais localmente Lipschitizianos e um Teorema de Concentração e Compacidade para Espaços de Orlicz. _____________________________________________________________________________________ ABSTRACT / In this work we study the existence of nontrivial solution for the following class
of multivalued quasilinear problems
L(u) ∈ ∂u F(x; u) em Ω,
where Ω ∁ RN is an domain, N ≥ 2 e ∂u F(x; u) is a generalized gradient of F(x; t)
with respect to t. The main tools utilized are Variational Methods for Locally Lipschitz Functional and a Concentration Compactness Theorem for Orlicz space.
|
2 |
Mínimos em C1 versus Orlicz-Sobolev e multiplicidade global de soluções positivas para problemas elípticos quasilinearesSantos, Lais Moreira dos 21 March 2014 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2014. / Submitted by Ana Cristina Barbosa da Silva (annabds@hotmail.com) on 2014-11-20T18:14:31Z
No. of bitstreams: 1
2014_LaisMoreiradosSantos.pdf: 1869813 bytes, checksum: fcf681f6068642f7d9c54812014b3ce5 (MD5) / Approved for entry into archive by Patrícia Nunes da Silva(patricia@bce.unb.br) on 2014-11-24T15:41:28Z (GMT) No. of bitstreams: 1
2014_LaisMoreiradosSantos.pdf: 1869813 bytes, checksum: fcf681f6068642f7d9c54812014b3ce5 (MD5) / Made available in DSpace on 2014-11-24T15:41:28Z (GMT). No. of bitstreams: 1
2014_LaisMoreiradosSantos.pdf: 1869813 bytes, checksum: fcf681f6068642f7d9c54812014b3ce5 (MD5) / Os principais objetivos deste trabalho consistem em estudar os espaços de Orlicz, Orlicz-Sobolev e abordar a relação entre a minimalidade de um funcional na topologia de C1() com a minimalidade desse funcional na topologia dos espaços de Orlicz-Sobolev. Como consequência disso, estabeleceremos um resultado de “multiplicidade global” de soluções positivas para uma classe de problemas de equações diferenciais parciais, no ambiente dos espaços de Orlicz-Sobolev. __________________________________________________________________________ ABSTRACT / The main goals of this work are to study of the Orlicz and Orlicz-Sobolev spaces and discuss the connection between the minimality of functionals in the topology C1() and the minimality this functionals in the topology of W1;P0 (). Consequently, we are going toestablish a result of “global multiplicity” of positive solutions for a class of partial differential equations in the setting of Orlicz-Sobolev spaces.
|
3 |
Equações diferenciais parciais elípticas multivalentes: crescimento crítico, métodos variacionais / Multivalued elliptic partial differential equations: critical growth, variational methodsCarvalho, Marcos Leandro Mendes 27 September 2013 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-11-25T14:36:31Z
No. of bitstreams: 2
Tese - Marcos Leandro Mendes Carvalho - 2013.pdf: 2450216 bytes, checksum: 78d3d3298d2050e0e82310644ecda305 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-11-25T14:39:40Z (GMT) No. of bitstreams: 2
Tese - Marcos Leandro Mendes Carvalho - 2013.pdf: 2450216 bytes, checksum: 78d3d3298d2050e0e82310644ecda305 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-11-25T14:39:40Z (GMT). No. of bitstreams: 2
Tese - Marcos Leandro Mendes Carvalho - 2013.pdf: 2450216 bytes, checksum: 78d3d3298d2050e0e82310644ecda305 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2013-09-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we develop arguments on the critical point theory for locally Lipschitz functionals
on Orlicz-Sobolev spaces, along with convexity, minimization and compactness
techniques to investigate existence of solution of the multivalued equation
−∆Φu ∈ ∂ j(.,u) +λh in Ω,
where Ω ⊂ RN is a bounded domain with boundary smooth ∂Ω, Φ : R → [0,∞) is
a suitable N-function, ∆Φ is the corresponding Φ−Laplacian, λ > 0 is a parameter,
h : Ω → R is a measurable and ∂ j(.,u) is a Clarke’s Generalized Gradient of a function
u %→ j(x,u), a.e. x ∈ Ω, associated with critical growth. Regularity of the solutions is
investigated, as well. / Neste trabalho desenvolvemos argumentos sobre a teoria de pontos críticos para funcionais
Localmente Lipschitz em Espaços de Orlicz-Sobolev, juntamente com técnicas de
convexidade, minimização e compacidade para investigar a existencia de solução da
equação multivalente
−∆Φu ∈ ∂ j(.,u) +λh em Ω,
onde Ω ⊂ RN é um domínio limitado com fronteira ∂Ω regular, Φ : R → [0,∞) é uma
N-função apropriada, ∆Φ é o correspondente Φ−Laplaciano, λ > 0 é um parâmetro,
h : Ω → R é uma função mensurável e ∂ j(.,u) é o gradiente generalizado de Clarke da
função u %→ j(x,u), q.t.p. x ∈ Ω, associada com o crescimento crítico. A regularidade de
solução também será investigada.
|
4 |
Existência de múltiplas soluções positivas para uma classe de problemas elípticos quaselineares. / Existence of multiple positive solutions for a class of quaselinear elliptic problems.MENESES, João Paulo Formiga de. 13 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-13T18:38:15Z
No. of bitstreams: 1
JOÃO PAULO FORMIGA DE MENESES - DISSERTAÇÃO PPGMAT 2016..pdf: 1613708 bytes, checksum: 5f49f16ec6b9bdf21a073af08bdf1006 (MD5) / Made available in DSpace on 2018-08-13T18:38:15Z (GMT). No. of bitstreams: 1
JOÃO PAULO FORMIGA DE MENESES - DISSERTAÇÃO PPGMAT 2016..pdf: 1613708 bytes, checksum: 5f49f16ec6b9bdf21a073af08bdf1006 (MD5)
Previous issue date: 2016-11-25 / Neste trabalho, utilizando sub e supersoluções e métodos variacionais sobre espaços de Orlicz-Sobolev, estudamos a existência de múltiplas soluções positivas para uma classe de problemas elípticos quaselineares. / In this work, using sub and supersolutions and variational methods on
Orlicz-Sobolev spaces, we study the existence of multiple positive solutions
for a class of quasilinear elliptic problems.
|
5 |
Existência, multiplicidade e concentração de soluções positivas para uma classe de problemas quasilineares em espaços de Orlicz-SobolevSilva, Ailton Rodrigues da 29 February 2016 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-15T12:49:10Z
No. of bitstreams: 1
arquivototal.pdf: 1323834 bytes, checksum: 530efbd6b56f11c5cc1b4369c8c44888 (MD5) / Made available in DSpace on 2017-08-15T12:49:10Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1323834 bytes, checksum: 530efbd6b56f11c5cc1b4369c8c44888 (MD5)
Previous issue date: 2016-02-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we establish existence, multiplicity and concentration of positive solutions
for the following class of problem
8<:
div 2 ( jruj)ru + V (x) (juj)u = f(u); in RN;
u 2 W1; (RN); u > 0 in RN;
where N 2, is a positive parameter, ; V; f are functions satisfying technical conditions
that will be presented throughout the thesis and (t) = Rjtj
0 (s)sds. The main tools used
are Variational methods, Lusternik-Schnirelman of category, Penalization methods and
properties of Orlicz-Sobolev spaces. / Neste trabalho estabelecemos resultados de existência, multiplicidade e concentração de
soluções positivas para a seguinte classe de problemas quasilineares
8<:
div 2 ( jruj)ru + V (x) (juj)u = f(u); em RN;
u 2 W1; (RN); u > 0 em RN;
onde N 2, é um parâmetro positivo, ; V; f são funções satisfazendo condições técnicas
que serão apresentadas ao longo da tese e (t) = Rjtj
0 (s)sds. As principais ferramentas
utilizadas são os Métodos Variacionais, Categoria de Lusternik-Schnirelman, Método de
Penalização e propriedades dos espaços de Orlicz-Sobolev.
|
6 |
Equações de Schrödinger quaselineares com potenciais singulares ou se anulando no infinitoCarvalho, Gilson Mamede de 19 July 2016 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-15T11:35:55Z
No. of bitstreams: 1
arquivototal.pdf: 1290749 bytes, checksum: 9377b99ec1efcaa5be2f62cc2aae83ac (MD5) / Made available in DSpace on 2017-08-15T11:35:55Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1290749 bytes, checksum: 9377b99ec1efcaa5be2f62cc2aae83ac (MD5)
Previous issue date: 2016-07-19 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we study existence of standing wave solution for a class of quasilinear
Schrödinger equations involving potentials that may be singular at the origin or
vanishing at infinity. For dimensions bigger than two, we consider nonlinearities with
subcritical growth. In dimension two, we work with nonlinearities having exponential
critical growth. To obtain our results, we have used variational techniques, more
specifically, a version of the Mountain Pass Theorem, a regularity result of Brézis-Kato
type, arguments of symmetrical criticality principle type, Moser iteration method and
a Trudinger-Moser type inequality. / Neste trabalho, estudamos existência de solução do tipo onda estacionária para uma
classe de equações de Schrödinger quaselineares, envolvendo pontencias que podem ser
singular na origem ou que podem se anular no infinito. Para dimensões maiores que
dois, consideramos não-linearidades com crescimento subcrítico. Em dimensão dois,
trabalhamos com não linearidades possuindo crescimente crítico exponencial. Para a
obtenção de nossos resultados, usamos técnicas variacionais, mais especificamente, uma
versão do Teorema do Passo da Montanha, um resultado de regularidade do tipo Brézis-
Kato, argumentos do tipo princípio da criticalidade simétrica, método de iteração de
Moser e uma desigualdade do tipo Trudinger-Moser.
|
Page generated in 0.0355 seconds