Spelling suggestions: "subject:"singularités (mathématiques)"" "subject:"singularités (athématiques)""
1 |
Etude de l'équation harmonique dans un ouvert avec des conditions non linéaires de flux au bord / Study of the harmonic equation in an open with nonlinear flux boundary conditionsBoukarabila, Youssouf Oussama 21 June 2016 (has links)
L’objectif principal de cette thèse est divisée en deux parties. La première partie est consacrée à l’étude du problème, { −Δu + u = 0 dans Ω, ∂u/∂n + g(u) = μ sur ∂Ω, (0.1) où Ω est un ouvert régulier borné de ℝᴺ, g(·) est une fonction continue qui vérifie la condition du signe s · g(s) ≥ 0, dans certains modèles on ajoute l’hypothèse g(·) croissante, et finalement μ est une mesure bornée sur ∂Ω. Certains de nos résultats sont valables lorsque Ω := ℝᴺ+ . On commencera par montrer l’existence de solution de (0.1) lorsque μ est une fonction de L1(∂Ω), et cela sans ajouter une hypothèse supplémentaire sur g(·). Puis, on étudiera (0.1) lorsque μ est une mesure de Radon sur ∂Ω, dans ce contexte, le problème (0.1) pourra ne pas admettre une solution, et des conditions apparaissent sur g(·) et sur μ pour assurer l’existence d’une solution. On montrera l’existence de solutions lorsque, g(·) est une non-linéarité sous-critique en dimension N supérieure ou égale à trois, et lorsque g(·) satisfait l’hypothèse de singularité faible sur le bord en dimension N égale à deux (voir Chapitre 2 pour définitions). / The main aim of this thesis is divided into two parts. The first part is devoted to the study of the problem, { −Δu + u = 0 in Ω, ∂u/∂n + g(u) = μ on ∂Ω, (0.3) where Ω is a bounded regular domain of ℝᴺ, g(·) is a continuous function that satisfies the sign condition s · g(s) ≥ 0, in some model case we will assume that g(·) is increassing, and finally μ is a bounded measure on ∂Ω. Some of our results remain true when Ω := ℝᴺ+ . We will start by proving the existence of a solution of (0.3) when μ is an L1(∂Ω) function, and this independently of the nonlinearity g(·) that satisfies the previous hypothesis. Then, we will study (0.3) when μ is a Radon measure on ∂Ω. In such a context, some new conditions appear on g(·) and μ that assure the existence of a solution. We will prove the existence of a solution when g(·) is a sub-critical nonlinearity in dimension N larger or equal to three, and when g satisfies the weak singularity assumption on the boundary in case N equals two (see Chapter 2 for the definitions).
|
2 |
Analyse vectorielle des lieux de singularité de la plate-forme de Gough-StewartDoyon, Karine 18 April 2018 (has links)
De nos jours, la plate-forme de Gough-Stewart est utilisée couramment en industrie. L'inconvénient avec ce type de manipulateur, comme c'est le cas pour tous les manipulateurs parallèles, est que l'analyse de ses lieux de singularité est fastidieuse et n'est pas intuitive. Une expression scalaire décrivant ces lieux a déjà été développée, mais elle comporte 20 coefficients complexes, d'où l'intérêt de la récrire en conservant les termes sous forme vectorielle. Après quelques manipulations effectuées sur la matrice jacobienne, on obtient une expression plus compacte qui peut ensuite être utilisée dans des analyses par intervalles. Ces analyses permettent d'étudier les lieux de singularité pour un espace fini et confirment l'intérêt d'une expression vectorielle. De plus, les facteurs qui influencent la précision des résultats sont énoncés. Dans ce mémoire, l'architecture dite générale et celle de type MSSM sont étudiées afin de démontrer à quel point l'expression des lieux de singularité peut être simplifiée.
|
3 |
Filtration par le poids équivariante pour les variétés algébriques réelles avec actionPriziac, Fabien 28 November 2012 (has links) (PDF)
Introduite par B. Totaro, la filtration par le poids sur l'homologie des variétés algébriques réelles, analogue réel de la filtration par le poids de P. Deligne sur les variétés algébriques complexes, a été réalisée via un complexe de chaînes filtré par C. McCrory et A. Parusinski, qui en ont enrichi la compréhension, notamment à travers l'étude de la suite spectrale induite. Au milieu des nombreuses informations recelées par cette suite spectrale de poids, on retrouve les nombres de Betti virtuels. Dans cette thèse, on montre l'existence d'une filtration par le poids équivariante sur l'homologie équivariante des variétés algébriques réelles munies d'une action d'un groupe fini. On la réalise par un complexe filtré et, via la construction de plusieurs suites spectrales, on effectue des avancées significatives pour extraire des invariants additifs. Lors de notre étude, on définit fonctoriellement un complexe de poids avec action et on montre qu'un résultat de découpage d'une variété Nash munie d'une involution algébrique entraîne un analogue de la suite exacte de Smith, tenant compte de la filtration Nash-constructible. A travers la construction d'un complexe de poids invariant dans le cadre d'involutions algébriques, on retrouve également les nombres de Betti virtuels équivariants de G. Fichou. Enfin, en appliquant les bons foncteurs aux résultats sur les produits de filtrations par le poids réelles de T. Limoges, on donne des résultats sur les produits de filtrations par le poids équivariantes.
|
Page generated in 0.1014 seconds