• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desingularization properties of the Nash blow-up process.

Rebassoo, Vaho. January 1977 (has links)
Thesis (Ph. D.)--University of Washington. / Bibliography: l. 73-74.
2

Singularités des courbes planes, module des dérivations et schéma des arcs / Singularities of affine algebraic plane curves, derivations module and arc spaces

Kpognon, Kodjo Egadédé 12 December 2014 (has links)
A toute variété algébrique on peut associer différents objets algébrico-géométriques qui rendent compte en particulier des singularités de la variété. Cette thèse traite de l'interaction entre l'étude des singularités, le schéma des arcs et le module des dérivations dans le cadre des courbes algébriques affines planes. Elle démontre que les d-tissus quasi-homogènes incomplets sont linéarisables pour d > 3 en utilisant un théorème d'Alain Hénaut. Enfin, dans un dernier chapitre, cette thèse introduit le formalisme des fonctions zêta motiviques associées à une 1-forme locale. / To any algebraic variety one can associate several algebraic-geometric objets which in particular provide information on the singularities of the variety. This thesis deals with the interaction between the study of singularities, arc spaces and derivations module in the context of affine algebraic plane curves. Using a theorem of Alain Hénaut, we show that quasi-homogeneous incomplete d-webs are linearizable for d > 3. Finally, in the last chapter, this thesis intoduces the formalism of motivic zêta function of a local 1-form.

Page generated in 0.1258 seconds