• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • Tagged with
  • 10
  • 10
  • 10
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aplicação de um sistema de Inferência Fuzzy de suporte à decisão para estimação de valores de ações cotadas na Bolsa de Valores de São Paulo

Cichini, Fábio Augusto Leandrin [UNESP] 06 February 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:17Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-02-06Bitstream added on 2014-06-13T20:15:03Z : No. of bitstreams: 1 cichini_fal_me_bauru.pdf: 593852 bytes, checksum: 2abd66fc0f97dbce9ae57d7e25a54b4b (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O mercado de ações no Brasil tem se popularizado de forma expressiva. A nova perspectiva que empresas e investidores brasileiros passaram a ter frente ao mercado de ações ocasionou uma grande difusão deste. Assim como em outros mercados, o investidor espera obter os retornos financeiros condizentes com sua expectativa na compra ou venda desses ativos financeiros. Para que os investidores possam tomar suas decisões quanto aos melhores momentos de compra ou venda de ações existem vários tipos de ferramentas que possibilitam a realização de uma estimação de valores futuros desse mercado. Essas ferramentas se baseiam em óticas distintas, porém com objetivo único que é efetuar uma estimação precisa. Algumas dessas técnicas de estimação são construídas valendo-se de ferramentas da inteligência computacional. Impulsionado por uma crescente demanda por esse tipo de ferramenta, aplicou-se um sistema baseado em Lógica Fuzzy com o objetivo de se estimar valores de ações da Bolsa de Valores de São Paulo e obter assim as melhores opções de investimento. Foi considerado um banco de dados contendo valores de 61 ações que participaram desse mercado em 860 dias de negociação no período de janeiro de 2004 a dezembro de 2007. Os resultados obtidos refletem a eficiência dos sistemas de inferência fuzzy em realizar estimações de séries temporais, bem como validam a metodologia destacada. Além disso, esses resultados motivam investigações futuras. Consolidando uma contribuição original desse trabalho, apresenta-se a forma pela qual as variáveis exógenas para a estimação podem ser escolhidas. / The stock market in Brazil has become popular in an expressive way. The new outlook that Brazilian companies and investors have started to have inside the stock market has caused a great diffusion of it. As in other markets, the investor expects to obtain financial returns which are consistent with theri expectations in the purchase or sale of financial assets. In order to make investors take their decisions about the best time to buy or sell shares, there are several types of tools that enable the execution of an estimation of future market values. These tools are based on different perspectives, but with only one goal, that is to make an accurate estimation. Some of these estimation techniques are built with the use of tools of computational intelligence. Driven by a growing demand for this type of tool, a system based on Fuzzy Logic with the purpose of estimating values of shares and thus getting the best investment choices of São Paulo Stock Exchange was applied. It was considered a database containing values of 61 shares that participated in that market at 860 days of trading from January 2004 to December 2007. The results reflect the effectiveness of fuzzy inference systems to carry out estimations of time series as well as validate the highlighted methodology. Additionally, these results motivate future investigations. Strengthening an original contribution of this work, we present the way through which exogenous variables to this estimation can be chosen.
2

Proposta de um modelo quantitativo com base em lógica fuzzy para caracterização de cadeias de suprimentos em empresas / Proposal of a quantitative model based on fuzzy logic for the assessment of supply chains in companies

Ferreira, Rafael Alves 27 October 2017 (has links)
As empresas lidam com grupos de clientes distintos, com requisitos que os diferem entre si, portanto é importante aperfeiçoar o atendimento destes clientes por meio de estratégias da cadeia de suprimentos que sejam diferenciadas para cada grupo. A escola enxuta-ágil, apesar de sugerir formas práticas de avaliação da cadeia de suprimento para a tomada de decisão, não oferece muitas opções para sua segmentação. Por outro lado, a proposta de segmentação da escola do alinhamento dinâmico é mais robusta, entretanto esta escola sofre com excessiva normatização, além da imprecisão inerente a seu processo de avaliação primordialmente qualitativo e de difícil aplicação. Uma alternativa para lidar com a imprecisão relativa ao processo de segmentação é a aplicação da teoria dos conjuntos fuzzy. Nesse contexto, este trabalho tem por objetivo desenvolver um modelo quantitativo que utilize a teoria dos conjuntos fuzzy e, com base em dados de vendas, avalie a(s) cadeia(s) de suprimentos da empresa facilitando esta alcançar o alinhamento dinâmico. Os procedimentos de pesquisa utilizados no trabalho podem ser agrupados em três partes: pesquisa bibliográfica, desenvolvimento do modelo quantitativo axiomático descritivo e ilustração por meio de aplicação prática. O modelo computacional desenvolvido colaborou com a busca do alinhamento dinâmico. Obteve-se a identificação das cadeias de suprimentos que atendem aos grupos de clientes avaliados, fornecendo respostas de forma muito mais rápida que a análise proposta pelos modelos encontrados na literatura. A aplicação em caso real validou o modelo, uma vez que os resultados obtidos mostraram-se coerentes com a realidade apontada pelos especialistas da empresa estudada, indicando possíveis ações para o realinhamento da cadeia de suprimentos. / Companies deal with different customer groups, with requirements that differ between them, so it is important to improve customer service through different supply chain strategies for each group. The Leagile School, while suggesting practical ways of assessing the supply chain for decision-making, does not offer many options for its segmentation. The segmentation proposal of Dynamic Alignment School is more robust, however, this school is excessively normative, besides the vagueness inherent in its evaluation process that is primarily qualitative and difficult to apply. An alternative to deal with imprecision related to the segmentation process is the application of fuzzy set theory. In this context, the objective of this work is to develop a quantitative model that uses the fuzzy set theory and, based on sales data, assess the company\'s supply chain(s), facilitating the achievement of the dynamic alignment. The research procedures applied in the work can be grouped into three parts: bibliographic research, development of the descriptive axiomatic quantitative model, and illustration through practical application. The computational model developed collaborated with the search for dynamic alignment. It was possible to identify the supply chains that serve the client groups evaluated, providing answers faster than the analysis proposed by the models found in the literature. The application in real situation validated the model, since the results obtained were consistent with the reality pointed out by the experts of the company studied, indicating possible actions for the realignment of the supply chain.
3

Proposta de um modelo quantitativo com base em lógica fuzzy para caracterização de cadeias de suprimentos em empresas / Proposal of a quantitative model based on fuzzy logic for the assessment of supply chains in companies

Rafael Alves Ferreira 27 October 2017 (has links)
As empresas lidam com grupos de clientes distintos, com requisitos que os diferem entre si, portanto é importante aperfeiçoar o atendimento destes clientes por meio de estratégias da cadeia de suprimentos que sejam diferenciadas para cada grupo. A escola enxuta-ágil, apesar de sugerir formas práticas de avaliação da cadeia de suprimento para a tomada de decisão, não oferece muitas opções para sua segmentação. Por outro lado, a proposta de segmentação da escola do alinhamento dinâmico é mais robusta, entretanto esta escola sofre com excessiva normatização, além da imprecisão inerente a seu processo de avaliação primordialmente qualitativo e de difícil aplicação. Uma alternativa para lidar com a imprecisão relativa ao processo de segmentação é a aplicação da teoria dos conjuntos fuzzy. Nesse contexto, este trabalho tem por objetivo desenvolver um modelo quantitativo que utilize a teoria dos conjuntos fuzzy e, com base em dados de vendas, avalie a(s) cadeia(s) de suprimentos da empresa facilitando esta alcançar o alinhamento dinâmico. Os procedimentos de pesquisa utilizados no trabalho podem ser agrupados em três partes: pesquisa bibliográfica, desenvolvimento do modelo quantitativo axiomático descritivo e ilustração por meio de aplicação prática. O modelo computacional desenvolvido colaborou com a busca do alinhamento dinâmico. Obteve-se a identificação das cadeias de suprimentos que atendem aos grupos de clientes avaliados, fornecendo respostas de forma muito mais rápida que a análise proposta pelos modelos encontrados na literatura. A aplicação em caso real validou o modelo, uma vez que os resultados obtidos mostraram-se coerentes com a realidade apontada pelos especialistas da empresa estudada, indicando possíveis ações para o realinhamento da cadeia de suprimentos. / Companies deal with different customer groups, with requirements that differ between them, so it is important to improve customer service through different supply chain strategies for each group. The Leagile School, while suggesting practical ways of assessing the supply chain for decision-making, does not offer many options for its segmentation. The segmentation proposal of Dynamic Alignment School is more robust, however, this school is excessively normative, besides the vagueness inherent in its evaluation process that is primarily qualitative and difficult to apply. An alternative to deal with imprecision related to the segmentation process is the application of fuzzy set theory. In this context, the objective of this work is to develop a quantitative model that uses the fuzzy set theory and, based on sales data, assess the company\'s supply chain(s), facilitating the achievement of the dynamic alignment. The research procedures applied in the work can be grouped into three parts: bibliographic research, development of the descriptive axiomatic quantitative model, and illustration through practical application. The computational model developed collaborated with the search for dynamic alignment. It was possible to identify the supply chains that serve the client groups evaluated, providing answers faster than the analysis proposed by the models found in the literature. The application in real situation validated the model, since the results obtained were consistent with the reality pointed out by the experts of the company studied, indicating possible actions for the realignment of the supply chain.
4

Estimador fuzzy de velocidade para motores de indução trifásicos usando abordagem sensorless / Speed fuzzy estimator for three-phase induction motors using sensorless approach

Minotti, Cristiano 08 July 2008 (has links)
O uso da tecnologia sensorless é uma tendência crescente para acionamentos industriais aplicados em máquinas elétricas. A estimação dos parâmetros elétricos e mecânicos envolvidos com o controle da máquina elétrica são utilizados freqüentemente para se evitar medir todas as variáveis envolvidas no processo. A redução de custos em acionamentos industriais, além do incremento da robustez do sistema, são algumas das vantagens do uso de técnicas sensorless. Este trabalho propõe o uso de lógica fuzzy para estimar a velocidade de rotação de motores de indução trifásicos. Estão presentes resultados de simulações computacionais e comparação com outras técnicas inteligentes para validação da abordagem apresentada. / The use of sensorless technologies is an increasing tendency on industrial drives for electrical machines. The estimation of electrical and mechanical parameters involved with the electric machine control is used very frequently in order to avoid measurement of all variables from this process. The cost reduction may also be considered in industrial drives, besides the increasing robustness of the system, as advantages of the use of sensorless technologies. This work proposes the use of fuzzy logic to estimate the speed in three-phase induction motors. Simulation results are presented to validate the proposed approach and comparative analyses with other intelligent techniques are also outlined.
5

Diagnóstico automático de defeitos em rolamentos baseado em lógica fuzzy / Automatic diagnoses of rolling bearing failures based in fuzzy logic.

Fujimoto, Rodrigo Yoshiaki 08 December 2005 (has links)
Este trabalho apresenta duas metodologias baseadas em lógica fuzzy para automatizar o diagnóstico de defeito em equipamentos mecânicos, além de fazer uma comparação de seu desempenho utilizando um caso experimental. As duas metodologias estudadas são: o sistema de inferência fuzzy e o algoritmo baseado em Fuzzy C-Means. O alarme estatístico é uma metodologia existente atualmente na indústria com este objetivo e que será utilizado neste trabalho para comparação de desempenho. Para realizar os testes, foram desenvolvidos programas que permitiram criar alarmes e sistemas fuzzy utilizando um banco de dados experimental. De modo diferente ao que são feitos normalmente, os sistemas fuzzy de diagnóstico testados neste trabalho foram construídos automaticamente utilizando informações do banco de dados experimentais composto por sinais de vibração, que representam a condição normal e diversos tipos de defeitos em mancais de rolamentos. Os parâmetros escalares característicos necessários para a entrada nos sistemas fuzzy foram obtidos através do processamento dos sinais de vibração de mancais de rolamentos. Nas análises realizadas neste trabalho, foi estudada a influência de diversos características de criação do sistema fuzzy. Como exemplo, pode-se citar como principal influência, a complexidade do banco de dados a ser analisado pelo sistema fuzzy. Por fim, além de apresentar uma comparação de performance entre as metodologias fuzzy apresentadas no trabalho, com o alarme estatístico, são discutidas as características de cada uma destas metodologias. Destacam-se como principais contribuições deste trabalho, a obtenção de uma metodologia utilizada para criar de maneira automática o sistema de inferência fuzzy e as modificações realizadas no algoritmo Fuzzy C-Means para aperfeiçoar o desempenho em classificação de defeitos. / This works describes two proposed methodologies for the automatic diagnoses in mechanical equipment: the fuzzy system inference and a Fuzzy C-Means based algorithm. Their performances are evaluated in an experimental case and, afterwards, also compared by the statistical alarm, a diagnostic methodology very used in industries at present. In order to do the tests, a developed computer algorithm allowed creating alarms and fuzzy systems by the use of an experimental database. These tested diagnostic systems were automatically built using information from the mentioned database that was composed by samples of vibration signals, representing several types of rolling bearing defects and the bearing normal condition. The fuzzy systems input scalar parameters were obtained by signal processing. The influence of some of the building fuzzy systems parameters in the system performance was also studied, which allow establishing, for example, that the database complexity is an important factor in the fuzzy system performance. Finally, this work discusses the main characteristics of each one of the described methodologies. The most important contribution of this work is the proposition of a methodology for creating fuzzy system automatically as well as the analysis of the fuzzy C-Means as a tool for system diagnoses.
6

Metodologia para diagnosticar a qualidade de energia elétrica referente à distorção harmônica em sistema trifásico de baixa tensão utilizando lógica fuzzy

GONÇALVES, Benevaldo Pereira 02 September 2010 (has links)
Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2011-11-05T18:15:18Z No. of bitstreams: 2 license_rdf: 23631 bytes, checksum: 0ebfb63a28ea1d6f51b802c66ebf651c (MD5) Dis_Benevaldo_Gonçalves_2010_PPGEE.pdf: 2368248 bytes, checksum: 969852b36f83b8f8b756d016862a55b2 (MD5) / Made available in DSpace on 2011-11-05T18:15:18Z (GMT). No. of bitstreams: 2 license_rdf: 23631 bytes, checksum: 0ebfb63a28ea1d6f51b802c66ebf651c (MD5) Dis_Benevaldo_Gonçalves_2010_PPGEE.pdf: 2368248 bytes, checksum: 969852b36f83b8f8b756d016862a55b2 (MD5) Previous issue date: 2010 / Este trabalho ressalta a importância de monitorar e diagnosticar a qualidade de energia elétrica sob a ótica das distorções harmônicas presente nas instalações elétricas em sistema trifásico de baixa tensão através de uma proposta metodológica para analisar e diagnosticar o nível dos distúrbios harmônico avaliando o indicador total de distorção harmônica (THD), apoiado por um sistema especialista baseado em um sistema de inferência Fuzzy. / This work emphasizes the importance of monitoring and diagnosing the quality of electric power from the viewpoint of harmonic distortion present in the electrical installation in low voltage three-phase system using a methodology to analyze and diagnose the level of harmonic disturbances evaluating the overall indicator of distortion Harmonic (THD), supported by an expert system based on a Fuzzy inference system. / ITEGAM - Instituto de Tecnologia e Educação Galileo da Amazônia
7

Estimador fuzzy de velocidade para motores de indução trifásicos usando abordagem sensorless / Speed fuzzy estimator for three-phase induction motors using sensorless approach

Cristiano Minotti 08 July 2008 (has links)
O uso da tecnologia sensorless é uma tendência crescente para acionamentos industriais aplicados em máquinas elétricas. A estimação dos parâmetros elétricos e mecânicos envolvidos com o controle da máquina elétrica são utilizados freqüentemente para se evitar medir todas as variáveis envolvidas no processo. A redução de custos em acionamentos industriais, além do incremento da robustez do sistema, são algumas das vantagens do uso de técnicas sensorless. Este trabalho propõe o uso de lógica fuzzy para estimar a velocidade de rotação de motores de indução trifásicos. Estão presentes resultados de simulações computacionais e comparação com outras técnicas inteligentes para validação da abordagem apresentada. / The use of sensorless technologies is an increasing tendency on industrial drives for electrical machines. The estimation of electrical and mechanical parameters involved with the electric machine control is used very frequently in order to avoid measurement of all variables from this process. The cost reduction may also be considered in industrial drives, besides the increasing robustness of the system, as advantages of the use of sensorless technologies. This work proposes the use of fuzzy logic to estimate the speed in three-phase induction motors. Simulation results are presented to validate the proposed approach and comparative analyses with other intelligent techniques are also outlined.
8

Diagnóstico automático de defeitos em rolamentos baseado em lógica fuzzy / Automatic diagnoses of rolling bearing failures based in fuzzy logic.

Rodrigo Yoshiaki Fujimoto 08 December 2005 (has links)
Este trabalho apresenta duas metodologias baseadas em lógica fuzzy para automatizar o diagnóstico de defeito em equipamentos mecânicos, além de fazer uma comparação de seu desempenho utilizando um caso experimental. As duas metodologias estudadas são: o sistema de inferência fuzzy e o algoritmo baseado em Fuzzy C-Means. O alarme estatístico é uma metodologia existente atualmente na indústria com este objetivo e que será utilizado neste trabalho para comparação de desempenho. Para realizar os testes, foram desenvolvidos programas que permitiram criar alarmes e sistemas fuzzy utilizando um banco de dados experimental. De modo diferente ao que são feitos normalmente, os sistemas fuzzy de diagnóstico testados neste trabalho foram construídos automaticamente utilizando informações do banco de dados experimentais composto por sinais de vibração, que representam a condição normal e diversos tipos de defeitos em mancais de rolamentos. Os parâmetros escalares característicos necessários para a entrada nos sistemas fuzzy foram obtidos através do processamento dos sinais de vibração de mancais de rolamentos. Nas análises realizadas neste trabalho, foi estudada a influência de diversos características de criação do sistema fuzzy. Como exemplo, pode-se citar como principal influência, a complexidade do banco de dados a ser analisado pelo sistema fuzzy. Por fim, além de apresentar uma comparação de performance entre as metodologias fuzzy apresentadas no trabalho, com o alarme estatístico, são discutidas as características de cada uma destas metodologias. Destacam-se como principais contribuições deste trabalho, a obtenção de uma metodologia utilizada para criar de maneira automática o sistema de inferência fuzzy e as modificações realizadas no algoritmo Fuzzy C-Means para aperfeiçoar o desempenho em classificação de defeitos. / This works describes two proposed methodologies for the automatic diagnoses in mechanical equipment: the fuzzy system inference and a Fuzzy C-Means based algorithm. Their performances are evaluated in an experimental case and, afterwards, also compared by the statistical alarm, a diagnostic methodology very used in industries at present. In order to do the tests, a developed computer algorithm allowed creating alarms and fuzzy systems by the use of an experimental database. These tested diagnostic systems were automatically built using information from the mentioned database that was composed by samples of vibration signals, representing several types of rolling bearing defects and the bearing normal condition. The fuzzy systems input scalar parameters were obtained by signal processing. The influence of some of the building fuzzy systems parameters in the system performance was also studied, which allow establishing, for example, that the database complexity is an important factor in the fuzzy system performance. Finally, this work discusses the main characteristics of each one of the described methodologies. The most important contribution of this work is the proposition of a methodology for creating fuzzy system automatically as well as the analysis of the fuzzy C-Means as a tool for system diagnoses.
9

Processamento de conhecimento impreciso combinando raciocínio de ontologias fuzzy e sistemas de inferência fuzzy

Yaguinuma, Cristiane Akemi 13 December 2013 (has links)
Made available in DSpace on 2016-06-02T19:03:58Z (GMT). No. of bitstreams: 1 5694.pdf: 2329501 bytes, checksum: 90a80d78f180e25fc719ec410704ff8f (MD5) Previous issue date: 2013-12-13 / Financiadora de Estudos e Projetos / In Computer Science, ontologies are used for knowledge representation in a number of applications, aiming to structure and handle domain semantics through models shared by humans and computational systems. Although traditional ontologies model semantic information and support reasoning tasks, they are based on a formalism which is less suitable to express the vagueness inherent in real-world phenomena and human language. To address this issue, many proposals investigate how traditional ontologies can be extended by incorporating concepts from fuzzy sets and fuzzy logic, resulting in fuzzy ontologies. In special, combining the formalism from fuzzy ontologies with fuzzy rule-based reasoning, which has been successfully applied in the context of fuzzy inference systems, can lead to more expressive inferences involving imprecision. In this sense, this doctoral thesis aims at exploring the integration of fuzzy ontology reasoning with fuzzy inference systems, resulting in the definition and the development of two approaches: HyFOM (Hybrid integration of Fuzzy Ontology and Mamdani reasoning) and FT-FIS (Fuzzy Tableau and Fuzzy Inference System). HyFOM is based on a hybrid architecture combining reasoners for ontologies, fuzzy ontologies and fuzzy inference systems, focusing on the interaction among its independent components. FT-FIS defines an interface between a fuzzy tableau-based algorithm and a fuzzy inference system, including the fuzzyRuleReasoning predicate that allows fuzzy rule-based reasoning to be invoked whenever necessary for fuzzy ontology reasoning tasks. The main contribution of HyFOM and FT-FIS comes from their reasoning architectures, which combine flexibility in terms of fuzzy rule semantics with the collaboration between inferences from both types of reasoning. Experiments regarding the recommendation of touristic attractions, based on synthetic data, revealed that HyFOM and FT-FIS provide integrated inferences, in addition to a more expressive approximation of the relation defined by fuzzy rules than the results from the fuzzyDL reasoner. In experiments involving the evaluation of chemical risk in food samples, based on real data, results obtained by HyFOM and FT-FIS are also more precise than fuzzyDL results, in comparison with reference values available in this domain. / No contexto da Ciência da Computação, ontologias são utilizadas para representação de conhecimento em diversas aplicações, com o intuito de estruturar e tratar a semântica de domínios específicos. Embora representem e permitam inferir conhecimento implícito, as ontologias convencionais baseiam-se em um formalismo que não é capaz de expressar a imprecisão presente em fenômenos do mundo real e na linguagem humana. Para abordar esta limitação, há diversas pesquisas que investigam a incorporação de conceitos da teoria de conjuntos fuzzy e da lógica fuzzy em ontologias, resultando em ontologias fuzzy. Em especial, combinar o formalismo das ontologias fuzzy com o raciocínio baseado em regras fuzzy, utilizado com sucesso no contexto de sistemas de inferência fuzzy, pode proporcionar uma maior expressividade com relação às inferências envolvendo imprecisão. Neste sentido, o objetivo deste projeto de doutorado é explorar a integração do raciocínio de ontologias fuzzy e de sistemas de inferência fuzzy, resultando na definição e no desenvolvimento das abordagens HyFOM (Hybrid integration of Fuzzy Ontology and Mamdani reasoning) e FT-FIS (Fuzzy Tableau and Fuzzy Inference System). HyFOM baseia-se em uma arquitetura híbrida que combina motores de inferência existentes na literatura para ontologias, ontologias fuzzy e sistemas de inferência fuzzy, com foco na interação entre seus componentes independentes. FT-FIS define uma interface entre um algoritmo baseado em tableau fuzzy e um sistema de inferência fuzzy, incluindo o predicado fuzzyRuleReasoning que permite invocar o raciocínio baseado em regras fuzzy quando for necessário para as tarefas de raciocínio da ontologia fuzzy. A principal contribuição das arquiteturas de raciocínio de HyFOM e FT-FIS está na combinação de flexibilidade, em termos da semântica das regras fuzzy, com a colaboração entre as inferências de ambos tipos de raciocínio. Experimentos considerando a recomendação de atrações turísticas, baseados em dados sintéticos, revelaram que HyFOM e FT-FIS são capazes de proporcionar inferências integradas, além de uma aproximação mais expressiva da relação estabelecida pelas regras fuzzy que os resultados providos pelo raciocinador fuzzyDL. Em experimentos envolvendo o domínio de risco químico em alimentos, baseado em dados reais, os resultados de HyFOM e FT-FIS também são mais precisos que os resultados de fuzzyDL, em comparação com valores de referência disponíveis nesse domínio.
10

Sistema de inferência Fuzzy para classificação de distúrbios em sinais elétricos

Aguiar, Eduardo Pestana de 30 August 2011 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-04-24T12:12:06Z No. of bitstreams: 1 eduardopestanadeaguiar.pdf: 1937921 bytes, checksum: 0472ffffb70cabf120dc5de86d6626b1 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-04-24T16:55:00Z (GMT) No. of bitstreams: 1 eduardopestanadeaguiar.pdf: 1937921 bytes, checksum: 0472ffffb70cabf120dc5de86d6626b1 (MD5) / Made available in DSpace on 2017-04-24T16:55:00Z (GMT). No. of bitstreams: 1 eduardopestanadeaguiar.pdf: 1937921 bytes, checksum: 0472ffffb70cabf120dc5de86d6626b1 (MD5) Previous issue date: 2011-08-30 / A presente dissertação tem como objetivo discutir o uso de técnicas de otimização baseadas no gradiente conjugado e de informações de segunda ordem para o treinamento de sistemas de inferência fuzzy singleton e non-singleton. Além disso, as soluções computacionais derivadas são aplicadas aos problemas de classificação de distúrbios múltiplos e isolados em sinais elétricos. Os resultados computacionais, obtidos a partir de dados sintéticos de distúrbios em sinais de tensão, indicam que os sistemas de inferência fuzzy singleton e non-singleton treinados pelos algoritmos de otimização considerados apresentam maior velocidade de convergência e melhores taxas de classificação quando comparados com aqueles treinados pelo algoritmo de otimização baseada em informações de primeira ordem e é bastante competitivo em relação à rede neural artificial perceptron multicamadas - multilayer perceptron (MLP) e ao classificador de Bayes. / This master dissertation aims to discuss the use of optimization techniques based on the conjugated gradient and on second order information for the training of singleton or non-singleton fuzzy inference systems. In addition, the computacional solutions obtained are applied to isolated a multiple disturbances classification problems in electric signals. Computational results obtained from synthetic data from disturbances in electric signals indicate that singleton or non-singleton fuzzy inference systems trained by the considered optimization algorithms present greater convergence speed and better classification rates when compared to those data trained by an optimization algorithm based on first order information and is quite competitive with multilayer perceptron neural network and Bayesian classifier.

Page generated in 0.0973 seconds