• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Diseño e implementación de un experimento de electrónica fuera del equilibrio a bordo de un nanosatélite de baja órbita

Ogalde Ortiz, José Alberto January 2019 (has links)
Tesis para optar al grado de Magíster en Ciencias de la Ingeniería, Mención Eléctrica / Memoria para optar al título de Ingeniero Civil Eléctrico / Históricamente, la mecánica estadística ha creado herramientas para describir la evolución de sistemas y procesos en equilibrio termodinámico. Sin embargo, los procesos del mundo real no siempre ocurren en condiciones de equilibrio. La turbulencia en fluidos, la materia granular y las máquinas moleculares son sistemas que tienen que lidiar constantemente con esta condición. En base a esto, se han desarrollado herramientas ampliamente utilizadas por la comunidad científica, conocidas como los Teoremas de Fluctuación. No obstante, se ha demostrado -mediante experimentos y simulaciones- que dichos teoremas no son válidos incluso en sistemas de primer orden. Especificamente en [1], se demostró que para un circuito RC fuera del equilibrio, las fluctuaciones de potencia inyectada se atañen a los teoremas de fluctuación solamente si la magnitud de las fluctuaciones son acotadas a un rango específico, lo cual rápidamente deja de ser cierto al aumentar la magnitud del forzante. En vista de esta problemática, este trabajo de tesis busca ampliar la investigación anterior mediante la exposición de un circuito RC a un ambiente espacial. El objetivo principal es desarrollar un experimento que se inserta como carga útil o payload para el nanosatélite SUCHAI. Y además se busca medir los cambios en las fluctuaciones de potencia inyectada con respecto al ambiente espacial. Este payload forma parte de la misión de SUCHAI y conforma la primera iteración de una familia de experimentos electrónicos que permiten acceder al espacio a tiempo real y a costos accesibles. Los resultados obtenidos muestran que es posible forzar un circuito RC a un estado fuera del equilibrio bajo las restricciones del Cubesat. Sin embargo, los datos satelitales no muestran diferencias sustanciales con respecto a las fluctuaciones en tierra. Con respecto al escenario descrito, se realizaron pruebas en ambientes controlados de presión (5 · 10 −6 y 760 [Torr]) y temperatura (−30 ◦ C a 45 ◦ C); donde simultáneamente se comparó la decisión de utilizar un generador de señales y un osciloscopio para excitar y medir el circuito. Estos datos tampoco muestran una diferencia en las fluctuaciones generada por los cambios de presión y tempe- ratura. En una prueba final, se propuso medir un RC equivalente independiente al satélite y además filtrar la respuesta del generador de señales desde 20 MHz a 1.8 KHz, donde se logró percibir cambios considerables en las fluctuaciones debido al cambio de presión atmosférica. En conclusión, se establece la posibilidad de forzar un circuito RC a un estado fuera del equilibrio de forma controlada dentro de un Cubesat. Además, se demuestra la resilencia de los componentes RC comerciales de tecnología SMD a los cambios de presión y temperatura. Por otra parte, la elección de instrumentos de excitación (generador de números aleatorios y DAC), junto los instrumentos de medición (ADC) y el espectro del forzante para el ex- perimento deben ser probados anteriormente en ambientes controlados como una cámara de termovacío, para así validar la factibilidad de medir el ambiente mediante este enfoque.
2

Transporte en el Canal Autosimilar y en el Gas de Lorentz

Reyes Lillo, Sebastián Eduardo January 2009 (has links)
En esta tesis estudiamos el transporte de partículas en billares. Estos son sistemas deterministas, reversibles y caóticos, donde partículas puntuales colisionan en forma elástica con obstáculos convexos, dispuestos de tal forma de asegurar el movimiento caótico de las trayectorias individuales. El interés en este tipo de modelos yace en la posibilidad de estudiar la relación existente entre características macroscópicas de fenómenos irreversibles, tales como la producción de entropía y los coeficientes de transporte, con propiedades dinámicas microscópicas del sistema, como los exponentes de Lyapunov y el mapa de colisiones. El modelo más popular corresponde al Gas de Lorentz en dos dimensiones con horizonte finito, el cual exhibe difusión y representa un sistema en equilibrio. Este sistema es llevado fuera del equilibrio agregando un campo externo que desvía las trayectorias de su vuelo libre entre colisiones y una restricción mecánica cuyo rol es disipar energía manteniendo la simetría de inversión temporal. Este sistema posee un flujo de masa estacionario en la dirección del campo y se conoce como Gas de Lorentz ``Isocinético''. En este trabajo se estudia el Billar Autosimilar de Lorentz, el cual presenta un estado estacionario fuera del equilibrio caracterizado por un flujo de masa constante. Este billar consiste en una deformación del Gas de Lorentz dependiente de un parámetro ε, este último juega un rol análogo al campo externo en el Gas Isocinético. El Billar de Lorentz se recupera con la condición ε=0. El Billar Autosimilar es un sistema extendido infinito que puede ser estudiado en términos de un sistema auxiliar finito que presenta, tal como en el Gas de Lorentz Isocinético, contracción de volumenes en su espacio de fase. Basándonos en la analogía entre ambos modelos desarrollamos una teoría tipo Respuesta Lineal para relacionar la velocidad promedio para ε pequeño con el coeficiente de difusión del Gas de Lorentz. Además, se estudia el proceso difusivo del Gas de Lorentz. Este sistema puede ser aproximado por un camino aleatorio simétrico. En este trabajo mostramos que una mejor estimación del coeficiente de difusión puede ser obtenida considerándolo como un camino aleatorio persistente.

Page generated in 0.1117 seconds