Spelling suggestions: "subject:"cistema neuromuscular"" "subject:"aistema neuromuscular""
1 |
Sistematização de procedimentos e algoritmos para o cálculo da velocidade de condução / Sistematization and algorithms for conduction velocity calculationSilva, Ana Paula Bernardi da 15 December 2015 (has links)
Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2015. / Submitted by Albânia Cézar de Melo (albania@bce.unb.br) on 2016-03-29T13:45:46Z
No. of bitstreams: 1
2015_AnaPaulaBernardiSilva.pdf: 2760403 bytes, checksum: 22bc53172314b3b37f4ab1aa008f9399 (MD5) / Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2016-03-29T16:39:10Z (GMT) No. of bitstreams: 1
2015_AnaPaulaBernardiSilva.pdf: 2760403 bytes, checksum: 22bc53172314b3b37f4ab1aa008f9399 (MD5) / Made available in DSpace on 2016-03-29T16:39:10Z (GMT). No. of bitstreams: 1
2015_AnaPaulaBernardiSilva.pdf: 2760403 bytes, checksum: 22bc53172314b3b37f4ab1aa008f9399 (MD5) / A Velocidade de Condução (VC) é um parâmetro fisiológico básico que fornece informações sobre o sistema neuromuscular, utilizada para identificar fadiga e patologias. Este trabalho propõe algoritmos para o cálculo da VC no domínio temporal e uma sistematização de procedimentos para otimizar o seu cálculo. Dado um arranjo linear de sinais Eletromiográficos de Superfície (EMGS), a sistematização proposta consiste de
três etapas distintas: (i) seleção dos canais que serão utilizados no cálculo; (ii) aplicação do denoising para minimização do ruído branco gaussiano nos canais selecionados; e (iii) cálculo da velocidade de condução. Na primeira etapa é apresentado um método (independente da intervenção humana) para selecionar os canais de um sinal de EMGS que representem o fenômeno desejado e que sejam similares. Esta seleção é realizada utilizando a distribuição do espectro de frequência dos sinais no intervalo de frequência útil. Na segunda etapa são propostos dois parâmetros de limiariarização para o denoising invariante ao deslocamento que minimizem o ruído branco obtidos de um processo experimental exaustivo. Nesta etapa, também é apresentado um comparativo de desempenho dos métodos e parâmetros mais conhecidos de limiarização utilizados no denoising com os aqui propostos. Na terceira etapa a VC é estimada, por meio de dois algoritmos no domínio temporal, que descrevem o parâmetro como uma dispersão de valores instantâneos. Um dos métodos utiliza o deslocamento dos potenciais de ação respectivos em diferentes canais. O segundo método calcula o coeficiente angular entre um conjunto de canais. O método proposto para a etapa seleção de canais apresentou aproximadamente 98% de correta classificação dos sinais. Não há como comparar este resultado, pois não foi encontrado trabalho similar. Na etapa referente a aplicação do Denoising foi constatado que, para os sinais utilizados neste trabalho, os limiares clássicos SURE e Hibrido apresentam os maiores valores de RSR. O limiar 1, proposto neste trabalho apresentou resultados bem semelhantes aos otimizadores clássicos. Os métodos propostos para o cálculo da VC não necessitaram de utilização de canais consecutivos. As dispersões apresentadas para representar a VC apontaram que existe uma variação do parâmetro ao longo do tempo. As etapas da sistematização se mostraram essenciais para reduzir
as limitações de um método de cálculo da VC no domínio temporal. / The conduction velocity (CV) is a basic physiological parameter that measures how fast an electrochemical impulse propagates through the neuromuscular system. The CV parameter is used to identify fatigue and pathologies, for instance. This work deals with novel algorithms to infer conduction velocity of white fiber in the time domain. Also, I propose a systematization process in order to estimate the conduction velocity which minimizes the inherent drawbacks of the time domain. Taken a linear arrange of skin surface electromyographic signals (EMGS) the proposed systematization has three distinct stages: (i) channel selection that are utilized for the calculation; (ii) denoising to minimize white Gaussian noise (AWGN) of the selected channels; and (iii) the conduction velocity estimation itself. In the first stage, a method (free from human intervention) that selects the channel of the EMG signal which are representative of the expected phenomenon
and are also similar, is presented. In the second stage, I propose two thresholds
for denoising were proposed, which are invariant to the displacement that minimizes AWGN. Also, in this stage, I compare the proposed methods with standart methods in the current literature. In the last stage, the conduction velocity is estimated by means of a time domain pair of algorithms, which describe the parameter as a dispersion of the real time values. The first algorithms uses the delay of action potentials on difference
channels. The second method computes the slope between a set of channels. Results:
The proposed method for channel selection step has approximately a 98% correct classification of signals. There is no way to compare this outcome because it was not found similar work. The classical thresholds SURE and Hybrid showed the highest SNR (Signal Noise Ratio) values for signals used in this work. The first threshold, proposed in this work showed very similar results to classic optimizers. The methods proposed for
the calculating the CV does not require the use of consecutive channels. Dipersions presented to represent the result of CV showed that there is a variation of the parameter over time. The stages of systematization proved essencial to reduce the limitations of a CV estimation in the time domain.
|
2 |
Modelagem e simulação do sistema neuromuscular responsável pelo controle do torque gerado na articulação do tornozelo. / Modeling and simulation of the neuromuscular system involved in the control of the ankle joint torque.Elias, Leonardo Abdala 19 August 2013 (has links)
O estudo do controle neurofisiológico do movimento tem sido realizado sob várias perspectivas. Experimentos com seres humanos são realizados durante a execução de uma dada tarefa motora e, frequentemente, mediante a aplicação de estímulos externos (elétrico, magnético ou mecânico) ao sistema neuromuscular. Estes experimentos fornecem uma grande quantidade de dados referentes ao funcionamento das redes neuronais e dos atuadores biomecânicos envolvidos nos procedimentos. Entretanto, alguns achados experimentais permanecem incompreensíveis, requerendo a utilização de outros recursos para elucidar quais mecanismos estão por trás dos resultados. Neste sentido, a modelagem matemática e a simulação computacional servem como parte importante destas ferramentas que são imprescindíveis para uma melhor compreensão dos mecanismos neurofisiológicos e biomecânicos por trás do controle do movimento. A presente tese de doutorado teve como objetivo prover um modelo neuromusculoesquelético biologicamente plausível capaz de investigar diferentes mecanismos responsáveis pelo controle do torque gerado na articulação do tornozelo. Este modelo teve como base um modelo neuromuscular previamente proposto, porém, que não incorporava uma série de elementos fundamentais para um estudo mais amplo do sistema motor. O novo modelo proposto contempla modelos de motoneurônios com dendritos ativos, proprioceptores musculares responsáveis pelas vias reflexas de curta e média latência, modelos que representam as características viscoelásticas dos músculos e um modelo biomecânico do ser humano durante a postura ereta quieta. O modelo foi aplicado a diferentes problemas relacionados ao funcionamento do sistema neuromusculoesquelético, que são tipicamente explorados por experimentos com seres humanos, e forneceu bases teóricas importantes para estes achados. / The neurophysiological control of movement has been studied from several standpoints. Human experiments are performed during the execution of a given motor task and, frequently, by applying an external stimulation (electrical, magnetic, or mechanical) to the neuromuscular system. These experiments provide a large amount of data concerning the functioning of the neuronal networks and biomechanical actuators involved in the procedures. Nonetheless, some experimental findings remain puzzling, so that other available resources should be used to clarify what mechanisms are behind these results. In this vein, the mathematical modeling and computer simulations are invaluable tools that may be used to better understand the neurophysiological and biomechanical mechanisms underlying the motor control. The present PhD thesis aimed at providing a biologically plausible neuromusculoskeletal model that was used to study different mechanisms involved in the control of the ankle joint torque. This model was based on a previous neuromuscular model, which did not employ several elements that are fundamental to a comprehensive evaluation of the motor system. The novel proposed model encompasses motor neuron models with active dendrites, muscle proprioceptors responsible for the short- and medium-latency reflex pathways, muscle models with the main viscoelastic features, and a biomechanical model of the human body during upright stance. It was applied to a series of problems frequently related to the functioning of the neuromusculoskeletal system and its main outcomes provided important theoretical bases for a set of experimental findings.
|
3 |
Modelagem e simulação do sistema neuromuscular responsável pelo controle do torque gerado na articulação do tornozelo. / Modeling and simulation of the neuromuscular system involved in the control of the ankle joint torque.Leonardo Abdala Elias 19 August 2013 (has links)
O estudo do controle neurofisiológico do movimento tem sido realizado sob várias perspectivas. Experimentos com seres humanos são realizados durante a execução de uma dada tarefa motora e, frequentemente, mediante a aplicação de estímulos externos (elétrico, magnético ou mecânico) ao sistema neuromuscular. Estes experimentos fornecem uma grande quantidade de dados referentes ao funcionamento das redes neuronais e dos atuadores biomecânicos envolvidos nos procedimentos. Entretanto, alguns achados experimentais permanecem incompreensíveis, requerendo a utilização de outros recursos para elucidar quais mecanismos estão por trás dos resultados. Neste sentido, a modelagem matemática e a simulação computacional servem como parte importante destas ferramentas que são imprescindíveis para uma melhor compreensão dos mecanismos neurofisiológicos e biomecânicos por trás do controle do movimento. A presente tese de doutorado teve como objetivo prover um modelo neuromusculoesquelético biologicamente plausível capaz de investigar diferentes mecanismos responsáveis pelo controle do torque gerado na articulação do tornozelo. Este modelo teve como base um modelo neuromuscular previamente proposto, porém, que não incorporava uma série de elementos fundamentais para um estudo mais amplo do sistema motor. O novo modelo proposto contempla modelos de motoneurônios com dendritos ativos, proprioceptores musculares responsáveis pelas vias reflexas de curta e média latência, modelos que representam as características viscoelásticas dos músculos e um modelo biomecânico do ser humano durante a postura ereta quieta. O modelo foi aplicado a diferentes problemas relacionados ao funcionamento do sistema neuromusculoesquelético, que são tipicamente explorados por experimentos com seres humanos, e forneceu bases teóricas importantes para estes achados. / The neurophysiological control of movement has been studied from several standpoints. Human experiments are performed during the execution of a given motor task and, frequently, by applying an external stimulation (electrical, magnetic, or mechanical) to the neuromuscular system. These experiments provide a large amount of data concerning the functioning of the neuronal networks and biomechanical actuators involved in the procedures. Nonetheless, some experimental findings remain puzzling, so that other available resources should be used to clarify what mechanisms are behind these results. In this vein, the mathematical modeling and computer simulations are invaluable tools that may be used to better understand the neurophysiological and biomechanical mechanisms underlying the motor control. The present PhD thesis aimed at providing a biologically plausible neuromusculoskeletal model that was used to study different mechanisms involved in the control of the ankle joint torque. This model was based on a previous neuromuscular model, which did not employ several elements that are fundamental to a comprehensive evaluation of the motor system. The novel proposed model encompasses motor neuron models with active dendrites, muscle proprioceptors responsible for the short- and medium-latency reflex pathways, muscle models with the main viscoelastic features, and a biomechanical model of the human body during upright stance. It was applied to a series of problems frequently related to the functioning of the neuromusculoskeletal system and its main outcomes provided important theoretical bases for a set of experimental findings.
|
Page generated in 0.067 seconds