• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Uma Abordagem de Raciocínio Espacial em Lógica de Descrições

BARROS, Rafael Cordeiro de 10 September 2012 (has links)
Submitted by Pedro Henrique Rodrigues (pedro.henriquer@ufpe.br) on 2015-03-05T16:44:47Z No. of bitstreams: 2 Dissertacao_Rafael_C_Barros_VersaoFinal.pdf: 3086911 bytes, checksum: a71e3520c1f218291e2cb7b5423a3564 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-05T16:44:47Z (GMT). No. of bitstreams: 2 Dissertacao_Rafael_C_Barros_VersaoFinal.pdf: 3086911 bytes, checksum: a71e3520c1f218291e2cb7b5423a3564 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2012-09-10 / Os sistemas de bancos de dados espaciais (SBDEs) são capazes de manipular dados geográficos. Sua principal aplicação é em sistemas de informações geográficas (SIGs), pois disponibilizam diversas funções, como indexação, consultas, exibição gráfica e algoritmos geométricos. Por padrão, os SBDEs realizam consultas a posteriori, ou seja, as operações envolvidas em cada consulta são executadas no momento da solicitação do usuário. Por isso, as consultas espaciais, geralmente compostas de diversos cálculos geométricos, possuem alto custo computacional. Recentemente, surgiram abordagens que processam consultas sobre dados geográficos através de raciocínio espacial. Uma das vantagens disso é a capacidade de obter resultados utilizando lógica, evitando, dessa forma, muitos cálculos geométricos. O cálculo de conexões de regiões (Region Connection Calculus - RCC) é um exemplo de formalização bastante utilizado em raciocínio espacial, pois define axiomas de relacionamentos entre regiões, em lógica de primeira ordem. Disso posto, esta dissertação propõe uma nova abordagem de raciocínio espacial utilizando lógica de descrições. Nessa abordagem, um conjunto mínimo de relacionamentos espaciais é calculado a priori, por um SBDE, e armazenado em uma ontologia, formalizada com regras de composição de relacionamentos do RCC. Dessa forma, utilizando lógica de descrições e o conjunto inicial de relacionamentos, é possível raciocinar todos os outros relacionamentos definidos na ontologia RCC. A partir de então, consultas espaciais qualitativas podem ser realizadas sem a necessidade de cálculos geométricos sobre dados espaciais. Com o objetivo de validar a abordagem proposta, também foi realizada uma aplicação com dados reais do estado de Pernambuco, de difícil obtenção e tratamento. Apesar dessas dificuldades, a aplicação pôde ser utilizada concretamente para checagem semântica no projeto NTDO (Neglected Tropical Disease Ontology), em uma aplicação que processa dados públicos integrados de doenças tropicais negligenciáveis.
2

Spatial Indexing on Flash-based Solid State Drives / Espacial em Dispositivos de Estado Sólido baseados em Memória Flash

Carniel, Anderson Chaves 21 December 2018 (has links)
Spatial database systems widely employ spatial indexing structures to speed up the processing of spatial queries. Many of the proposed spatial indices in the literature, such as the R-tree, assume magnetic disks (i.e., HDDs) as the underlying storage device. They are termed as disk-based spatial indices. On the other hand, several spatial database applications are increasingly using flash-based Solid State Drives (SSDs) and thus, designing spatial indices for these storage devices has gained increasing attention. This is due the fact that, compared to HDDs, SSDs offer smaller size, lighter weight, lower power consumption, better shock resistance, and faster reads and writes. Hence, specific indices for SSDs, termed flash-aware spatial indices, have been proposed in the literature to deal with the intrinsic characteristics of SSDs, such as the asymmetric costs of reads and writes. However, the research to date has not been able to establish a flash-aware spatial index that actually exploits all the benefits of SSDs. This PhD thesis advances on the literature as follows. We firstly define a methodology to create spatial datasets for experimental evaluations. We also propose FESTIval, a versatile framework that provides a common and unique environment to execute experimental evaluations. Such contributions served as a foundation to conduct performance analysis along this PhD work. By using this foundation, we analyze the performance behavior of spatial indices on different storage devices, such as HDDs and SSDs. Further, we discuss the applicability of employing flash simulators on the evaluation of spatial indices. The findings of these experiments contributed to the proposal of eFIND, a generic and efficient framework for flash-aware spatial indexing. eFIND is generic because it can port a wide range of disk-based spatial indices to SSDs. eFIND is also efficient because it is based on a set of design goals that exploits SSD performance. Performance tests showed that, compared to the state of the art, eFIND improved the construction of ported disk-based spatial indices and the execution of spatial queries. For porting the R-tree (i.e., the eFIND R-tree), eFIND showed performance reductions from 43% to 77% to build spatial indices, and from 4% to 23% to execute spatial queries. For porting the xBR+-tree (i.e., the eFIND xBR+-tree), eFIND showed reductions from 28% to 83% to build spatial indices and up to 35% in the spatial query processing. / Sistemas de banco de dados espaciais empregam estruturas de indexação espaciais para acelerar o processamento de consultas espaciais. Muitos dos índices espaciais propostos na literatura, como a R-tree, assumem que os dispositivos de armazenamentos são os discos magnéticos (i.e., HDDs) e são denominados índices espaciais baseados em disco. Por outro lado, várias aplicações de banco de dados espaciais estão cada vez mais usando Solid State Drives (SSDs) baseados em memória flash e, assim, projetar índices espaciais para esses dispositivos tem ganhado cada vez mais atenção. Isso se deve ao fato de que, em comparação com os HDDs, os SSDs oferecem menor tamanho, menor peso, menor consumo de energia, melhor resistência a choques além de leituras e escritas mais rápidas. Assim, índices espaciais para memória flash têm sido propostos na literatura para lidar com as características intrínsecas dos SSDs, como os custos assimétricos de leituras e escritas. No entanto, a pesquisa até o momento não conseguiu estabelecer um índice espacial que realmente explora todos os benefícios dos SSDs. Esta tese de doutorado avança na literatura da seguinte forma. Primeiramente, é definida uma metodologia para criar conjuntos de dados espaciais para avaliações experimentais. Também é proposto FESTIval, um arcabouço versátil que fornece um ambiente comum e único para executar avaliações experimentais. Tais contribuições serviram como base para conduzir análises de desempenho ao longo deste trabalho de doutorado. Usando essa base, o comportamento de desempenho de índices espaciais em diferentes dispositivos de armazenamento, como HDDs e SSDs, é analisado. Além disso, discutese a aplicabilidade de simuladores flash na avaliação experimental de índices espaciais. Os resultados desses experimentos contribuíram para a proposta de eFIND, uma estrutura genérica e eficiente para indexação espacial em memórias flash. eFIND é genérico porque pode portar uma ampla gama de índices espaciais baseados em disco para SSDs. eFIND também é eficiente porque é baseado em um conjunto de objetivos de projeto que exploram o desempenho do SSD. Os testes de desempenho mostraram que, em comparação com o estado da arte, eFIND melhorou a construção de índices espaciais portados e a execução de consultas espaciais. Para portar a R-tree (ou seja, a eFIND R-tree), eFIND mostrou melhorias de desempenho de 43% a 77% para construir índices espaciais e de 4% a 23% para executar consultas espaciais. Para portar a xBR+-tree (ou seja, a eFIND xBR+-tree), eFIND mostrou melhorias de 28% a 83% para construir índices espaciais e de até 35% no processamento de consultas espaciais.

Page generated in 0.1133 seconds