Spelling suggestions: "subject:"cistemas dde controle autoadaptativo"" "subject:"cistemas dde controle autoadaptativos""
1 |
Aplicações de múltiplas redes neurais em sistemas mecatrônicos.Areolino de Almeida Neto 00 December 2003 (has links)
Esta tese trata da aplicação de múltiplas redes neurais em sistemas mecatrônicos. É mostrado que as múltiplas redes neurais devem ser treinadas em seqüência, tal que aprendizado acumulativo possa ser obtido sem a necessidade de um coordenador geral. Este método de treinamento pode manter o aprendizado já adquirido pelas redes neurais, que foram treinadas primeiramente, enquanto novo aprendizado pode ser obtido pelas redes neurais, que foram adicionadas e treinadas posteriormente. A saída de todas as redes é simplesmente somada para produzir a saída da estrutura neural. A estrutura proposta de múltiplas redes neurais é aplicada em dois tipos de sistemas mecatrônicos: a) para controlar a posição de um sistema com uma haste flexível e b) para criar uma matriz de representação comprimida, que é usada no planejamento de trajetórias de um robô móvel considerando o desvio de obstáculos dinâmicos. Para o sistema com uma haste flexível, o uso de múltiplas redes neurais em três tipos de estruturas de controle do tipo Feedback-Error-Learning é investigado: IDML (Inverse Dynamic Model Learning), NRL (Nonlinear Regulator Learning) e Referência Atrasada. Para o problema de planejamento de trajetórias de um robô móvel, primeiramente a técnica Reinforcement Learning é usada para adquirir o aprendizado necessário na decisão de como desviar de obstáculos dinâmicos. Este aprendizado é codificado em uma matriz. Então as múltiplas redes neurais são usadas para criar uma representação mais comprimida desse aprendizado com uma pequena degradação da resolução.
|
Page generated in 0.1256 seconds