• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Equações Diferenciais por partes:ciclos limite e cones invaiantes / Piecewise differential equation: limit cycles and invariant cones

SILVA, Thársis Souza 25 March 2011 (has links)
Made available in DSpace on 2014-07-29T16:02:18Z (GMT). No. of bitstreams: 1 Dissertacao Tharsis Souza Silva.pdf: 1389814 bytes, checksum: c28dfe55ac776a4de30d43875907dc64 (MD5) Previous issue date: 2011-03-25 / In this work, we consider classes of discontinuous piecewise linear systems in the plane and continuous in the space. In the plane, we analyze systems of focus-focus (FF), focusparabolic (FP) and parabolic-parabolic (PP) type, separated by the straight line x = 0, and we prove that can appear until two limit cycles depending of parameters variations. Also we study a specific system, piecewise, with two saddles (one fixed in the origin and the other in the neighborhood of point (1;1)) separated by the straight line y= -x+1, and we show that can appear until two limit cycles depending of parameters variations. Finally, we examine a continuous piecewise linear system in R³ and we prove the existence of invariant cones and, through this structures, we determine some stable and unstable behavior. / Neste trabalho, consideramos classes de sistemas lineares por partes descontínuos no plano e contínuos no espaço. No plano, analisamos sistemas do tipo foco-foco (FF), parabólico-foco (PF) e parabólico-parabólico (PP) separados pela reta x = 0 e demonstramos que podem aparecer até dois ciclos limite, dependendo de variações de parâmetros. Também estudamos um sistema específico, linear por partes, com duas selas (uma sela fixa na origem e outra na vizinhança do ponto (1;1)) separadas pela reta y= -x+1 , e mostramos que podem aparecer até dois ciclos limite dependendo de variações de parâmetros. Por fim, examinamos um sistema linear por partes contínuo em R³ e demonstramos a existência de cones invariantes e, através destas estruturas, determinamos alguns comportamentos estáveis e instáveis.

Page generated in 0.1139 seconds