• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 13
  • 7
  • 6
  • 1
  • Tagged with
  • 63
  • 63
  • 19
  • 18
  • 17
  • 16
  • 14
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Theoretical and Computational Study of Limit Cycle Oscillations in High Performance Aircraft

Padmanabhan, Madhusudan A. January 2015 (has links)
<p>High performance fighter aircraft such as the F-16 experience aeroelastic Limit Cycle Oscillations (LCO) when they carry certain combinations of under-wing stores. This `store-induced LCO' causes serious problems including airframe fatigue, pilot discomfort and loss of operational effectiveness. The usual response has been to restrict the stores carriage envelope based on flight test experience, and accept the accompanying reduction in mission performance.</p><p>Although several nonlinear mechanisms - structural as well as aerodynamic, have been proposed to explain the LCO phenomenon, their roles are not well understood. Consequently, existing models are unable to predict accurately AND reliably the most critical LCO properties, namely onset speed and response level. On the other hand, the more accurate Computational Fluid Dynamics (CFD) based time marching methodology yields results at much greater expense and time. Clearly, there is a critical need to establish methods that are more rapid while providing accurate predictions more in line with flight test results than at present. Such a capability will also aid in future aircraft design and usage.</p><p>This work was undertaken to develop a better understanding of nonlinear aeroelastic phenomena, and their relation to classical flutter and divergence, with a particular focus on store-induced LCO in high performance fighter aircraft. The following systems were studied: (1) a `simple' wing with a flexible and nonlinear root attachment, (2) a `generic' wing with a flexible and nonlinear wing-store attachment and (3) the F-16 aircraft, again with nonlinear wing-store attachments.</p><p>While structural nonlinearity was present in all cases, steady flow aerodynamic nonlinearity was also included in the F-16 case by the use of a Computational Fluid Dynamics model based on the Reynolds Averaged Navier Stokes (RANS) equations. However, dynamic linearization of the CFD model was done for the present computations. The computationally efficient Harmonic Balance (HB) nonlinear solution technique was a key component of this work, with time marching simulations and closed form solutions being used selectively to confirm the findings of the HB solutions. The simple wing and the generic wing were both modeled as linear beam-rods whose displacements were represented using the primitive modes method. The wing aerodynamic model was linear (quasi-steady for the simple wing and based on the Vortex Lattice Method for the generic wing), and the store aerodynamics were omitted.</p><p>The presence of a cubic restoring force (of hardening or softening type, in stiffness or in damping) at the root of the simple wing led to several interesting results and insights. Next, various nonlinear mechanisms including cubic restoring force, freeplay and friction were introduced at the wing-store attachment of the generic wing and these led to a still greater variety in behavior. General relationships were established between the type of nonlinearity and the nature of the resulting response, and they proved very useful for tailoring the F-16 study and interpreting its results.</p><p>The Air Force Seek Eagle Office/Air Force Research Laboratory provided a modal structural model of an LCO-prone store configuration of the F-16 aircraft with stores included. In order to investigate a range of stores attachment configurations, the analysis required modification of the stiffness and damping of the wing-store attachment. Since the Finite Element model of the wing and store structure was not available, the modification was achieved by subtracting the store and adding it back with the necessary changes to the store or attachment using a dynamic decoupling/coupling technique. The modified models were subjected to flutter/LCO analysis using the Duke Harmonic Balance CFD RANS solver, and the resulting flutter boundaries were used in combination with the HB method to derive LCO responses due to the wing-store attachment nonlinearity.</p><p>Comparisons were made between the simulation results and the F-16 flight test LCO data. While multiple sources of nonlinearity are probably responsible for the wide range of observed LCO behavior, it was concluded that cubic softening stiffness and positive cubic damping were the more likely structural mechanisms causing LCO, in addition to nonlinear aerodynamics.</p> / Dissertation
2

Nonlinear Dynamics of a Rotor Supported by Homopolar Magnetic Bearings with Saturation

Kang, Kyungdae 2010 December 1900 (has links)
An objective in the design of high performance machinery is to minimize weight so magnetic bearings are often designed to operate slightly lower than the magnetic material saturation. Further weight reduction in the bearings requires operation in the nonlinear portion of the B-H curve. This necessitates a more sophisticated analysis at the bearing and rotordynamic system levels during the design stage. This dissertation addresses this problem in a unique manner by developing a fully nonlinear homopolar magnetic bearing model. The nonlinear dynamics of permanent magnet-biased homopolar magnetic bearing (PMB HoMB) system with 2-dof rigid and 4-dof flexible rotor is analyzed. The dynamic behavior of the rotor-bearing system is examined in the feedback control loop that includes low pass filter effects. An analytical magnetization curve model is proposed to predict the nonlinear magnetic force under the influence of the magnetic flux saturation more accurately. The modified Langmuir method with the novel correction terms for the weak flux region is used to curve-fit the experimental magnetization data of Hiperco 50. A new curve fit model of the B-H curve is shown to have significantly better agreement with the measured counterpart than conventional piecewise linear and other models. PMB HoMB characteristics with flux saturation, such as forces depending on the rotor position and bearing stiffness, are compared with these other models. Frequency response curve, bifurcation diagram, Poincare plot, and orbit plot are utilized to demonstrate the effects of the nonlinearities included in the 2-dof rotorbearing system. Due to heavy static loads applied to the rotor, it operates within the magnetic flux saturation region at the bearing clearance. The voltage saturation in the power amplifier of the magnetic bearing introduces lag in the control loop and the response of the heavily loaded 4-dof rotor-bearing system shows that limit cycle stability can be achieved due to the magnetic flux saturation or current saturation in the amplifier; otherwise the system would experience a destructive instability. These simulation results provide the first explanation of this commonly observed limit cycle which is referred to as ‘virtual catcher bearings’.
3

Time Spectral Adjoint Based Design for Flutter and Limit Cycle Oscillation Suppression

Prasad, Rachit 27 May 2020 (has links)
When designing aircraft wings shapes, it is important to ensure that the flight envelope does not overlap with regions of flutter or Limit Cycle Oscillation (LCO). A quick assessment of these dynamic aeroelastic for various design candidates is key to successful design. Flutter based design requires the sensitivity of flutter parameters to be known with the respect of design parameters. Traditionally, frequency domain based methods have been used to predict flutter characteristics and its sensitivity. However, this approach is only applicable for linear or linearized models and cannot be applied to systems undergoing LCO or other nonlinear effects. Though the time accurate approach can be implemented to overcome this problem, it is computationally expensive. Also, the unsteady adjoint formulation for sensitivity analysis, requires the state and adjoint variables to be stored at every time step, which prohibitively increases the memory requirement. In this work, these problems have been overcome by implementing a time spectral method based approach to compute flutter onset, LCOs and their design sensitivities in a computationally efficient manner. The time spectral based formulation approximates the solution as a discrete Fourier series and directly solves for the periodic steady state, leading to a steady formulation. This can lead to the time spectral approach to be faster than the time accurate approach. More importantly, the steady formulation of the time spectral method also eliminates the memory issues faced by the unsteady adjoint formulation. The time spectral based flutter/LCO prediction method was used to predict flutter and LCO characteristics of the AGARD 445.6 wing and pitch/plunge airfoil section with NACA 64A010 airfoil. Furthermore, the adjoint based sensitivity analysis was used to carry out aerodynamic shape optimization, with an objective of maximizing the flutter velocity with and without constraints on the drag coefficient. The resulting designs show significant increase in the flutter velocity and the corresponding LCO velocity profile. The resulting airfoils display a greater sensitivity to the transonic shock which in turn leads to greater aerodynamic damping and hence leading to an increase in flutter velocity. / Doctor of Philosophy / When designing aircrafts, dynamic aeroelastic effects such as flutter onset and Limit Cycle Oscillations need to considered. At low enough flight speeds, any vibrations arising in the aircraft structure are damped out by the airflow. However, beyond a certain flight speed, instead of damping out the vibrations, the airflow accentuates these vibrations. This is known as flutter and it can lead to catastrophic structural failure. Hence, during the aircraft design phase, it must be ensured that the aircraft would not experience flutter during the flight conditions. One of the contribution of this work has been to come up with a fast and accurate method to predict flutter using computational modelling. Depending on the scenario, it is also possible that during flutter, the vibrations in the structure increase to a certain amplitude before leveling off due to interaction of non-linear physics. This condition is known as limit cycle oscillation. While they can arise due to different kinds of non-linearities, in this work the focus has been on aerodynamic non-linearities arising from shocks in transonic flight conditions. While limit cycle oscillations are undesirable as they can cause structural fatigue, they can also save the aircraft from imminent structural fracture and hence it is important to accurately predict them as well. The main advantage of the method developed in this work is that the same method can be used to predict both the flutter onset condition and limit cycle oscillations. This is a novel development as most of the traditional approaches in dynamic aeroelasticity cannot predict both the effects. The developed flutter/LCO prediction method has then been used in design with the goal of achieving superior flutter characteristics. In this study, the shape of the baseline airfoil is changed with the goal of increasing the flutter velocity. This enables the designed system to fly faster without addition of weight. Since the design has been carried out using gradient based optimization approach, an efficient way to compute the gradient needs to be used. Traditional approaches to compute the gradient, such as Finite Difference Method, have computational cost proportional to the number of design variables. This becomes a problem for shape design optimization, where a large number of design variables are required. This has been overcome by developing an adjoint based sensitivity analysis method. The main advantage of the adjoint based sensitivity analysis is that it its computational cost is independent of the number of design variables, and hence a large number of design variables can be accommodated. The developed flutter/LCO prediction and adjoint based sensitivity analysis framework was used to carry out shape design for a pitch/plunge airfoil section. The objective of the design process was to maximize the flutter onset velocity with and without constraints on drag. The resulting optimized airfoils showed significant increase in the flutter velocity.
4

Prediction of Limit Cycle Oscillation in an Aeroelastic System using Nonlinear Normal Modes

Emory, Christopher Wyatt 12 January 2011 (has links)
There is a need for a nonlinear flutter analysis method capable of predicting limit cycle oscillation in aeroelastic systems. A review is conducted of analysis methods and experiments that have attempted to better understand and model limit cycle oscillation (LCO). The recently developed method of nonlinear normal modes (NNM) is investigated for LCO calculation. Nonlinear normal modes were used to analyze a spring-mass-damper system with nonlinear damping and stiffness to demonstrate the ability and limitations of the method to identify limit cycle oscillation. The nonlinear normal modes method was then applied to an aeroelastic model of a pitch-plunge airfoil with nonlinear pitch stiffness and quasi-steady aerodynamics. The asymptotic coefficient solution method successfully captured LCO at a low relative velocity. LCO was also successfully modeled for the same airfoil with an unsteady aerodynamics model with the use of a first order formulation of NNM. A linear beam model of the Goland wing with a nonlinear aerodynamic model was also studied. LCO was successfully modeled using various numbers of assumed modes for the beam. The concept of modal truncation was shown to extend to NNM. The modal coefficients were shown to identify the importance of each mode to the solution and give insight into the physical nature of the motion. The quasi-steady airfoil model was used to conduct a study on the effect of the nonlinear normal mode's master coordinate. The pitch degree of freedom, plunge degree of freedom, both linear structural mode shapes with apparent mass, and the linear flutter mode were all used as master coordinates. The master coordinates were found to have a significant influence on the accuracy of the solution and the linear flutter mode was identified as the preferred option. Galerkin and collocation coefficient solution methods were used to improve the results of the asymptotic solution method. The Galerkin method reduced the error of the solution if the correct region of integration was selected, but had very high computational cost. The collocation method improved the accuracy of the solution significantly. The computational time was low and a simple convergent iteration method was found. Thus, the collocation method was found to be the preferred method of solving for the modal coefficients. / Ph. D.
5

Limit Cycle PIO Analysis With Simultaneously Acting Multiple Asymmetric Saturation

Lamendola, Joel E. 12 June 1998 (has links)
Pilot in-the-loop oscillation (PIO) is a phenomenon which occurs due to the dynamic interaction between pilot and aircraft. This detrimental aircraft handling quality appears through a variety of flight conditions and is very difficult to predict. Due to this complex behavior, PIO is not easily eliminated. This report describes a method of PIO analysis that is capable of examining multiple asymmetric nonlinearities acting simultaneously. PIO analyses are performed on a model based on the USAF NT-33A variable stability aircraft with nonlinearities including stick position limiting, elevator deflection limiting, and elevator rate limiting. These analyses involve the use of dual input describing functions which enable the prediction of frequency, amplitude, and mean point of oscillation. / Master of Science
6

Identification of Transient Nonlinear Aeroelastic Phenomena

Chabalko, Christopher C. 03 April 2007 (has links)
Complex nonlinear aspects of aeroelastic phenomena include unsteady nonlinear aerodynamic loads, structural nonlinearities, as well as nonlinear couplings between the flow and the structural response. Nonlinearities in aerodynamic loads originate from unsteady shocks and/or flow separation. Structural nonlinearities are geometric, or a result of free play. Nonlinear fluid structure couplings result from nonlinear resonance between the aerodynamic load and structural modes. Under different conditions, one or a combination of these aspects could yield flutter or Limit Cycle Oscillations (LCO). The overall goal of this work is to develop the capabilities to quantify the role that these different nonlinear mechanisms could play in observed flutter and LCO. The realization of such a goal would help in providing a benchmark for the detection of nonlinear aeroelastic instabilities and possibly effective means for obtaining improved performance and reduced uncertainties through operation beyond conventional boundaries that are based on linear analysis. Additionally, this effort will provide a benchmark for the validation of computational methodologies. In this thesis, wavelet-based higher order spectra are applied to identify different nonlinear aeroelastic phenomena as encountered in two experiments. First, the analysis is applied to a set of experiments involving a flexible semispan model (FSM) of a High Speed Civil Transport (HSCT) wing configuration conducted by Silva et al. (Experimental Steady and Unsteady Aerodynamic and Flutter Results for HSCT Semispan Models; AIAA/ASME/ASCE/AHS/ASC 41st Structures, Structural Dynamics, and Materials Conference, 2000). The interest is in the identification of nonlinear aeroelastic phenomena associated with a high dynamic response region which was measured over a large range of dynamic pressures around Mach number 0.98. At the top of this region is a ``hard'' flutter point that resulted in the loss of the model. The results show that ``hard'' flutter is related to intermittent nonlinear coupling between the shock motion and large amplitude structural motions. Second, the analysis is applied to identify nonlinear aspects of LCO encountered during test flights of an F-16 aircraft. The results show quadratic and cubic couplings in the acceleration signals of the under-wing launchers and high quadratic coupling levels between flaperon motions and wing oscillations. The implications of applying these techniques in the capacity of a ``flutterometer'' are also discussed. / Ph. D.
7

Development of Reduced-Order Flame Models for Prediction of Combustion Instability

Huang, Xinming 30 November 2001 (has links)
Lean-premixed combustion has the advantage of low emissions for modern gas turbines, but it is susceptible to thermoacoustic instabilities, which can result in large amplitude pressure oscillations in the combustion chamber. The thermoacoustic limit cycle is generated by the unsteady heat release dynamics coupled to the combustor acoustics. In this dissertation, we focused on reduced-order modeling of the dynamics of a laminar premixed flame. From first principles of combustion dynamics, a physically-based, reduced-order, nonlinear model was developed based on the proper orthogonal decomposition technique and generalized Galerkin method. In addition, the describing function for the flame was measured experimentally and used to identify an empirical nonlinear flame model. Furthermore, a linear acoustic model was developed and identified for the Rijke tube experiment. Closed-loop thermoacoustic modeling using the first principles flame model coupled to the linear acoustics successfully reproduced the linear instability and predicted the thermoacoustic limit cycle amplitude. With the measured experimental flame data and the modeled linear acoustics, the describing function technique was applied for limit cycle analysis. The thermoacoustic limit cycle amplitude was predicted with reasonable accuracy, and the closed-loop model also predicted the performance for a phase shift controller. Some problems found in the predictions for high heat release cases were documented. / Ph. D.
8

Pilot Variability During Pilot-Induced Oscillation

Robbins, Andrew Campbell 23 June 1999 (has links)
Pilot Induced Oscillations (PIO) are described as pilot-aircraft dynamic couplings which can lead to instability in an otherwise stable system. Previous and ongoing research has attempted to explain, predict, and avoid such oscillations. In contrast to other research, this effort backs away from pilot models and PIO avoidance and focuses on the characteristics of the pilot before, during, and after a PIO. Often, PIO''s can be explained by limit cycles occurring in a non-linear system where the non-linearities cause a sustained, constant amplitude oscillation. The primary instigators in such a PIO are usually a non-linear element (i.e. rate limit saturation) and a trigger event (i.e. pilot mode switching or increased pilot gain). By performing analysis in the frequency domain, determining such oscillations becomes easier. Using spectrograms and power spectral density functions, the frequency content of a signal in the pilot-aircraft system can also be investigated. An F-14 flight test was recently performed where the hydraulic system was modified to determine the feasibility of trying to recover the aircraft (land on carrier) during such an extreme hydraulic failure. During testing, a severe PIO occurred because of the tight tracking task used during aerial refueling. While performing spectrograms and power spectral analysis, an increase in power concentration at the PIO frequency was observed. With a linear approximation of the F-14 aircraft dynamics, a closed-loop system containing the aircraft, actuator, and pilot dynamics is developed so that limit cycle analysis can be performed. With stable limit cycle solutions found possible, a pilot-in-the-loop simulation is performed to verify the pilot model used in limit cycle analysis. Using the flight test data, limit cycle analysis, and pilot-in-the-loop simulation, a connection between variation in pilot behavior and PIO predicted by the increase in power concentration is investigated. The resulting connection showed that an increase in pilot gain along with a transition from observing pitch attitude to pitch rate are the possible trigger events causing the PIO. The use of spectrograms as a PIO predictor is shown to be possible, provided the necessary calculations can be completed in real-time. / Master of Science
9

Nonlinear Analysis and Control of Aeroelastic Systems

Shukla, Himanshu 25 June 2016 (has links)
Presence of nonlinearities may lead to limit cycle oscillations (LCOs) in aeroelastic systems. LCOs can result in fatigue in wings leading to catastrophic failures. Existence of LCOs for velocities less than the linear flutter velocity has been observed during flight and wind tunnel tests, making such subcritical behavior highly undesirable. The objective of this dissertation is to investigate the existence of subcritical LCOs in aeroelastic systems and develop state feedback controllers to suppress them. The research results are demonstrated on a two degree of freedom airfoil section model with stiffness nonlinearity. Three different approaches are developed and discussed. The first approach uses a feedback linearization controller employing the aeroelastic modal coordinates. The use of modal coordinates results in a system which is linearly decoupled making it possible to avoid cancellation of any linear terms when compared to existing feedback linearization controllers which use the physical coordinates. The state and control costs of the developed controller are compared to the costs of the traditional feedback linearization controllers. Second approach involves the use of nonlinear normal modes (NNMs) as a tool to predict LCO amplitudes of the aeroelastic system. NNM dynamics along with harmonic balance method are used to generate analytical estimates of LCO amplitude and its sensitivities with respect to the introduced control parameters. A multiobjective optimization problem is solved to generate optimal control parameters which minimize the LCO amplitude and the control cost. The third approach uses a nonlinear state feedback control input obtained as the solution of a multiobjective optimization problem which minimizes the difference between the LCO commencement velocity and the linear flutter velocity. The estimates of LCO commencement velocity and its sensitivities are obtained using numerical continuation methods and harmonic balance methods. It is shown that the developed optimal controller eliminates any existing subcritical LCOs by converting them to supercritical LCOs. / Ph. D.
10

Improvements to the design methodology and control of semicontinuous distillation

Madabhushi, Pranav Bhaswanth January 2020 (has links)
Distillation technology has been evolving for many decades for a variety of reasons, with the most important ones being energy efficiency and cost. As a part of the evolution, semicontinuous distillation was conceived, which has the advantages of both batch and continuous distillation. The economic benefits of this intensified process compared to batch and continuous distillation were expounded in many of the previous studies. Semicontinuous distillation of ternary mixtures, which is the main focus of this thesis, is carried out in a single distillation column with a tightly integrated external middle vessel and the operation is driven by a control system. The system operation does not include any start-up or shut-down phases of the column and has three periodically repeating operating modes. In the status quo design procedure, called the ‘sequential design methodology,’ an imaginary continuous distillation system design was used to design the semicontinuous distillation system. In this methodology, dynamic simulations of the process were used to find the values of the controller tuning parameters based on the design of the continuous system. Afterwards, black-box optimization was used to find better controller tuning parameter values that minimized cost. However, after analyzing the dynamics of the system for different cases, it was found that the heuristics used in this design methodology yielded suboptimal designs. Therefore, the primary goal of the thesis is to improve these heuristics by incorporating more knowledge of the system and thereby develop a better design methodology. Firstly, the setpoint trajectories generated by the ideal side draw recovery arrangement for side stream flowrate control, which was standard in most semicontinuous distillation studies, was modified. In this thesis, the performance of the status quo as compared to the modified version, based on the criteria, cycle time and cost for different case studies, was presented. Results showed that the modified-ideal side draw recovery arrangement for side stream flowrate control performed better with a 10-20% lower separating cost while maintaining product purities. Furthermore, to reap more cost benefits, dynamic optimization was used to seek the flow rate trajectory that minimized cost. However, it was found that the additional cost savings, which is in addition to the benefits gained by using the modified version, were at the most 2% from different case studies. Subsequently, the impact of changing the imaginary continuous distillation system design on the nature of the semicontinuous distillation limit cycle, specifically, its period was studied. Results revealed the necessity for a new design procedure, and thus the back-stepping design methodology was proposed. This design methodology was used to find better limit cycles of zeotropic ternary semicontinuous distillation using the aspenONE Engineering suite. The proposed methodology was applied to three different case studies using feed mixtures with different chemical components. A comparison with the sequential design methodology for the two case studies indicates that the new method outperforms the state-of-the-art by finding limit cycles that were 4% to 57% lower in terms of cost. Furthermore, the designs obtained from this procedure were guaranteed to have feasible column operation with stable periodic steady-state behaviour. Semicontinuous distillation design using the design methodology with heuristic components involves guessing, checking and then using black-box optimization to find the values of the design variables to meet some performance criteria. Furthermore, mathematical guarantees of either local or global optimality of the designs obtained from the design procedure do not exist. Therefore, to address these issues, in this thesis, the application of using the shooting method for designing the semicontinuous distillation process was demonstrated using two case studies, which involve the separation of hexane, heptane and octane. This method has the potential to be combined with gradient-based optimization algorithms for optimization of the process design in the future. / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.0846 seconds