Spelling suggestions: "subject:"nonlinear bnormal modes"" "subject:"nonlinear bnormal codes""
1 |
Prediction of Limit Cycle Oscillation in an Aeroelastic System using Nonlinear Normal ModesEmory, Christopher Wyatt 12 January 2011 (has links)
There is a need for a nonlinear flutter analysis method capable of predicting limit cycle oscillation in aeroelastic systems. A review is conducted of analysis methods and experiments that have attempted to better understand and model limit cycle oscillation (LCO). The recently developed method of nonlinear normal modes (NNM) is investigated for LCO calculation.
Nonlinear normal modes were used to analyze a spring-mass-damper system with nonlinear damping and stiffness to demonstrate the ability and limitations of the method to identify limit cycle oscillation. The nonlinear normal modes method was then applied to an aeroelastic model of a pitch-plunge airfoil with nonlinear pitch stiffness and quasi-steady aerodynamics. The asymptotic coefficient solution method successfully captured LCO at a low relative velocity. LCO was also successfully modeled for the same airfoil with an unsteady aerodynamics model with the use of a first order formulation of NNM. A linear beam model of the Goland wing with a nonlinear aerodynamic model was also studied. LCO was successfully modeled using various numbers of assumed modes for the beam. The concept of modal truncation was shown to extend to NNM. The modal coefficients were shown to identify the importance of each mode to the solution and give insight into the physical nature of the motion.
The quasi-steady airfoil model was used to conduct a study on the effect of the nonlinear normal mode's master coordinate. The pitch degree of freedom, plunge degree of freedom, both linear structural mode shapes with apparent mass, and the linear flutter mode were all used as master coordinates. The master coordinates were found to have a significant influence on the accuracy of the solution and the linear flutter mode was identified as the preferred option.
Galerkin and collocation coefficient solution methods were used to improve the results of the asymptotic solution method. The Galerkin method reduced the error of the solution if the correct region of integration was selected, but had very high computational cost. The collocation method improved the accuracy of the solution significantly. The computational time was low and a simple convergent iteration method was found. Thus, the collocation method was found to be the preferred method of solving for the modal coefficients. / Ph. D.
|
2 |
Theoretical and Experimental Modal Analysis of Nonlinear Vibrating Structures using Nonlinear Normal ModesPeeters, Maxime 09 March 2011 (has links)
Theoretical and experimental modal analysis, i.e., the computation of vibration modes from a mathematical model and from experimental data, respectively, is quite sophisticated and advanced in linear structural dynamics. However, nonlinearity is a frequent occurrence in real-world engineering structures, and the existing linear methodologies fail dramatically in the presence of nonlinear dynamical phenomena. Therefore, the present thesis focuses on the development of a practical nonlinear analog of modal analysis for properly accounting for nonlinearity in mechanical systems.
The concept of nonlinear normal mode (NNM) provides solid mathematical and theoretical foundations for a rigorous, yet understandable by the practicing engineer, analysis of nonlinear dynamical behaviors. In this context, a useful framework for nonlinear modal analysis of vibrating structures, which includes the computation of NNMs from finite element models and their identification from experimental data, is proposed in this dissertation. In view of the still limited use of NNMs in structural dynamics, special attention is devoted to progress toward a practical tool that has the potential to deal with large-scale, real-world structures.
Targeting an effective and exact computation of NNMs, even in strongly nonlinear regimes of motion, one original contribution of this work is to resort to numerical methods. An algorithm combining a shooting procedure and the so-called pseudo-arclength continuation method is developed. On the other hand, a nonlinear extension of phase resonance testing (also known as force appropriation) is introduced for the experimental identification of NNMs, which is another innovative aspect of the doctoral thesis. In particular, the phase lag quadrature criterion, which is used for linear experimental modal analysis, is generalized in the presence of nonlinear dynamical behavior.
Academic examples are first considered to illustrate, in a simple manner, that the proposed methods form an effective and adequate framework for nonlinear modal analysis. Furthermore, more realistic structures, including a full-scale aircraft, are studied to demonstrate the potential applicability of the approach to large-scale, real-life applications.
|
3 |
A Theoretical and Experimental investigation of Nonlinear Vibrations of Buckled BeamsLacarbonara, Walter 27 February 1997 (has links)
There is a need for reliable methods to determine approximate solutions of nonlinear continuous systems. Recently, it has been proved that finite-degree-of-freedom Galerkin-type discretization procedures applied to some distributed-parameter systems may fail to predict the correct dynamics. By contrast, direct procedures yield reliable approximate solutions. Starting from these results and extending some of these concepts and procedures, we compare the outcomes of these two approaches (the Galerkin discretization and the direct application of a reduction method to the original governing equations) with experimental results. The nonlinear planar vibrations of a buckled beam around its first buckling mode shape are investigated. Frequency-response curves characterizing single-mode responses of the beam under a primary resonance are generated using both approaches and contrasted with experimentally obtained frequency-response curves. It is shown that discretization leads to erroneous quantitative as well as qualitative results in certain ranges of the buckling level, whereas the direct approach predicts the correct dynamics of the system. / Master of Science
|
4 |
Um estudo da influência do comportamento não linear na análise modal experimental /Tahara, Lucas Zanovello. January 2019 (has links)
Orientador: Samuel da Silva / Resumo: Os métodos de análise modal tradicionalmente são limitados aos sistemas vibrando em regime linear de movimento. Assim, quando as estruturas sofrem altas amplitudes de excitação ou são muito flexíveis, gerando possíveis vibrações não-lineares, estes métodos acabam perdendo a sua validade e as propriedades características. Com base nesta motivação, este trabalho apresenta um estudo detalhado para mostrar quais as limitações de se aproximar por parâmetros modais sistemas vibrando em regime de movimento não linear. Para ilustrar a formulação, assume-se uma viga engastada e livre emulando um oscilador de Duffing com não linearidade concentrada, suave e polinomial (rigidez cúbica). Observa-se que para regimes de excitação baixa, pode-se extrair parâmetros modais do modelo e ajustá-los para níveis de excitação mais altos quando se induz vibração não-linear pelo aumento do nível da amplitude de excitação. Para situações de vibração não-linear opta-se por aproximar os sinais e saídas pelo método de superfície de resposta e identificar a dependência amplitude-frequência para extração de modos normais não-lineares. Os resultados apresentados com a formulação descrita neste trabalho permitem adaptar adequadamente as ferramentas convencionais de análise modal linear para validade e aplicação direta em casos de vibração em regime não linear, quando estes ainda são considerados de fraca influência. / Abstract: Modal analysis methods have traditionally been limited to systems vibrating in linear motion regime. Thus, when the structures undergo high excitation amplitudes or are very flexible, generating possible nonlinear vibrations, these methods end up losing their validity and characteristic properties. Based on this motivation, this work presents a detailed study to show the limitations of approaching by modal parameters systems vibrating in nonlinear regime. To illustrate the formulation, a cantilever beam is assumed to emulate a Duffing oscillator with concentrated, smooth, polynomial nonlinearity (cubic stiffness). It is observed that for low excitation regimes, one can extract modal parameters from the model and adjust them to higher excitation levels when inducing nonlinear vibration by increasing the excitation amplitude level. For nonlinear vibration situations, we choose to approximate the signals and outputs by the response surface method and identify the amplitude-frequency dependence for extraction of nonlinear normal modes. The results presented with the formulation described in this work allow to adapt adequately the conventional tools of linear modal analysis for validity and direct application in cases of vibration in nonlinear regime, when they are still considered of low influence. / Mestre
|
5 |
Méthodes numériques pour les systèmes dynamiques non linéaires : application aux instruments de musique auto-oscillantsKarkar, Sami 10 January 2012 (has links)
Ces travaux s'articulent autour du calcul des solutions périodiques dans les systèmes dynamiques non linéaires, au moyen de méthodes numériques de continuation. La recherche de solutions périodiques se traduit par un problème avec conditions aux limites périodiques, pour lequel nous avons implémenté deux méthodes d'approximation : - Une méthode spectrale dans le domaine fréquentiel, l'équilibrage harmonique d'ordre élevé, qui repose sur une formulation quadratique des équations. Nous proposons en outre une extension de cette méthode aux cas de non-linéarités non rationnelles. - Une méthode pseudo-spectrale dans le domaine temporel, la collocation à l'aide fonctions polynômiales par morceaux. Ces méthodes transforment le problème continu en un système d'équations algébriques non linéaires, dont les solutions sont calculées par continuation à l'aide de la méthode asymptotique numérique. L'ensemble de ces outils, complétés d'une analyse linéaire de stabilité, sont intégrés au code de calcul MANLAB. Applications : Un modèle physique non-régulier de clarinette est étudié en détail : à partir de la branche de solutions statiques et ses bifurcations, on calcule les différentes branches de solutions périodiques, ainsi que leur stabilité et leurs bifurcations. Ce modèle est ensuite adapté au cas du saxophone, pour lequel on intègre une caractérisation acoustique expérimentale, afin de mieux tenir compte de la géométrie complexe de l'instrument. Enfin, nous étudions un modèle physique simplifié de violon, avec une non-régularité liée frottement de Coulomb. / Periodic solutions of nonlinear dynamical systems are the focus of this work. We compute periodic solutions through a BVP formulation, solved with two numerical methods: - a spectral method, in the frequency domain: the hogh-order Harmonic Balance Method, using a quadratic formulation of the original equations. We also propose an extension to nonrational nonlinearities. - a pseudo-spectral method, in the time domain : the arthogonal collocation at Gauss point, with piece-wise polynomial interpolation. Both methods lead to a system of nonlinear algebraic equations, and its solutions are computed by a continuation algorithm : the Asymptotic Numerical Method. These methods are embeded in the numerical package MANLAB, together with a linear stability analysis. Application We then apply these methods to physical models of several instruments : a clarinet, a saxophone, and a violin. The clarinet model contains a non-smooth contact between the reed and the mouthpiece. The study focuses on the evolution of frequency, loudness, and spectrum along the branch of periodic solutions when varying the mouth pressure. The saxophone model is very similar, but an experimental characterization of the bore is used in that case. Finally, the violin model with a non-smooth Coulomb contact law and a simplified resonator is studied, showing the variety of models that can be treated using this method.
|
6 |
Dynamique non linéaire d’un assemblage d’oscillateurs : application au contrôle / Nonlinear dynamics of a set of oscillators : application to controlCharlemagne, Simon 05 April 2018 (has links)
L'utilisation de systèmes légers non linéaires permet de réaliser le contrôle vibratoire de structures subissant des oscillations non acceptables en termes de confort pour l'usager ou de sécurité de l'ouvrage. L'étude des puits d'énergie non linéaires, ou « Nonlinear Energy Sinks » (NES), a notamment fait l'objet de nombreuses recherches depuis le début des années 2000. Sa non-linéarité lui confère des capacités de pompage énergétique large bande, c'est-à-dire pour un large intervalle de fréquences de sollicitation, ce qui représente un avantage significatif en comparaison des absorbeurs comme l'amortisseur à masse accordée. Le but de ce manuscrit est d'étudier le couplage de chaîne d'oscillateurs non linéaires à des systèmes dynamiques linéaires soumis à des sollicitations harmoniques et d'analyser d'une part le comportement global du système, et d'autre part les potentialités de contrôle passif de telles chaînes. Une méthodologie analytique générale est présentée, puis appliquée à des exemples où des absorbeurs à non-linéarités cubiques à un, puis à N degrés de liberté sont attachés à un oscillateur linéaire. Une variation de cette méthodologie adoptant une vision continue de la chaîne est ensuite proposée. Enfin, un dispositif expérimental étudie le comportement d'un modèle réduit de bâtiment à un étage couplé à une chaîne de huit oscillateurs non linéaires. / Nonlinear light oscillators can be used for performing vibratory passive control of structures undergoing unacceptable oscillations in terms of comfort and safety. The study of Nonlinear Energy Sinks (NES) has been especially subject to an important research effort since the beginning of the 2000s. Its essential nonlinearity enables it to achieve large-band energy pumping, which is a significant advantage in comparison with classical Tuned Mass Dampers. In this manuscript, nonlinear chains of oscillators coupled to linear systems under harmonic excitation are studied. The main goal is to understand the behavior of the whole system and find evidence of passive control abilities of such chains. First of all, a general analytical methodology is presented and applied to examples where single and multi-degree-of-freedom absorbers with cubic nonlinearities are linked to a linear oscillator. A modification of this approach by considering the chain in the form of a continuous approximation is then proposed. Finally, an experimental device composed of a single storey reduced-scale building coupled to a chain of eight nonlinear oscillators is investigated.
|
7 |
[en] AN EXCURSION IN THE DYNAMICS OF FLEXIBLE BEAMS: FROM MODAL ANALYSIS TO NONLINEAR MODES / [pt] UMA EXCURSÃO NA DINÂMICA DE VIGAS FLEXÍVEIS: DE ANÁLISE MODAL A MODOS NÃO LINEARESGUSTAVO BRATTSTROEM WAGNER 24 November 2022 (has links)
[pt] Vigas flexíveis são encontradas com cada vez mais frequência em diferentes indústrias, uma vez que novos projetos têm buscado por estruturas mais
longas e leves. Isso pode ser uma consequência direta das novas demandas
estruturais nos projetos, ou uma simples consequência do engajamento das indústrias em programas de redução de custo (utilização de menos materiais).
Em geral, vigas flexíveis são modeladas sob hipóteses de grandes deslocamentos, grandes rotações, mas com pequenas deformações. Essas hipóteses permitem que o equacionamento da dinâmica de vigas flexíveis seja feito através de
elementos finitos co-rotacionais. A formulação co-rotacional decompõe o movimento das estruturas flexíveis em duas partes: uma contendo o movimento de
corpo rígido e outra com uma (pequena) deformação elástica. Dessa forma, a
não-linearidade geométrica causada pelos grandes deslocamentos e rotações das
seções transversais das vigas podem ser computadas de forma eficiente. Uma
das inovações dessa tese é o uso direto das equações de movimentos geradas pelos elementos finitos co-rotacionais no cálculo dos modos normais não-lineares
(MNNs). Até agora, a maioria das análises dinâmicas com elementos finitos
co-rotacionais foram restritas à integração das equações de movimento. O conhecimento de MNNs é útil na análise de sistemas não-lineares pois permitem
um detalhado entendimento das vibrações nos regimes não-lineares. Com eles,
pode-se, por exemplo, prever comportamentos de enrijecimento/relaxamento,
localização de respostas, interação entre modos, existência de isolas, etc. A
definição de Rosenberg sobre MNNs como sendo soluções periódicas (não necessariamente síncronas) do sistema é adotado na tese. Os métodos do Balanço
Harmônico e do Tiro são apresentados e utilizados no cálculo de soluções periódicas de sistemas não-lineares. Um procedimento de continuação numérica
é implementado para computar os MNN eficientemente para diferentes níveis
de energia. Exemplos numéricos mostram a capacidade do método proposto
quando aplicado aos elementos finitos co-rotacionais. / [en] Flexible beams are becoming ubiquitous in several industrial applications, as new projects often aim for lighter and longer structures. This fact is
directly related to the new challenging demands on structural performances,
or it is a simple consequence of the engagement of industries in cost reduction
programs (usage of less material). Flexible beams are usually modeled under
the assumption of large displacements, finite rotations, but with small strains.
Such hypotheses allow the equation of motion to be built using co-rotational
finite elements. The co-rotational formulation decomposes the total motion of
a flexible structure into two parts: a rigid body displacement and an elastic
(small) deformation. This way, the geometric nonlinearity caused by the large
displacements and rotations of the beam s cross sections can be efficiently computed. One of the novelties of this thesis is the direct usage of the equation of
motion generated by a co-rotational finite element formulation in the computation of nonlinear normal modes (NNM). So far, most of the dynamic analyses
with co-rotation finite element models were restricted to numerical integrations of the equation of motion. The knowledge of NNMs can be beneficial in the
analysis of any nonlinear structure since it allows a thoroughly understanding
of the vibratory response in the nonlinear regime. They can be used, for example, to predict a hardening/softening behavior, a localization of the responses,
the interactions between modes, the existence of isolas, etc. The Rosenberg s
definition of NNM as periodic solutions (non-necessarily synchronous motion)
is adopted here. The Harmonic Balance method and the Shooting methods
are presented and used to compute periodic solutions of nonlinear systems.
A numerical path continuation scheme is implemented to efficiently compute
NNMs at different energy levels. Numerical examples show the capability of
the proposed method when applied to co-rotational beam elements.
|
8 |
[en] INFLUENCE OF NON LINEAR NORMAL MODES AND SYMMETRIES ON THE DYNAMIC OF A SLENDER GUYED TOWER / [pt] INFLUÊNCIA DE MODOS NORMAIS NÃO LINEARES E DE SIMETRIAS NO COMPORTAMENTO DINÂMICO DE TORRES ESTAIADASICARO RODRIGUES MARQUES 29 September 2020 (has links)
[pt] As torres estaiadas estão entre as estruturas mais altas construídas pelo homem. Estas estruturas usualmente são muito esbeltas e a interação cabos/mastro leva a comportamentos altamente não lineares. Devido a sua complexidade, modelos simplificados são desenvolvidos para as simulações dessas estruturas. Um modelo discreto de dois graus de liberdade investigado por diversos autores apresenta fenômenos característicos de estruturas não lineares, como a superabundância de modos normais não lineares similares e modos normais não similares (NNMs), bifurcações de NNMs, ressonância interna e interação modal. O presente trabalho visa investigar o comportamento de um modelo estrutural contínuo de uma torre estaiada com um a três níveis de estais. O método dos elementos finitos (MEF) com uma formulação não linear é usado para realizar análises paramétricas da influência na resposta estática e dinâmica, linear e não linear, das características geométricas e físicas dos cabos, do peso próprio dos cabos e do mastro e de imperfeições iniciais nas frequências naturais e carga crítica da torre. As simetrias geradas pela distribuição uniforme dos cabos têm grande influência na resposta, dando origem a cargas críticas e frequências naturais coincidentes. Isso gera interação modal na flambagem e ressonância interna 1:1, aumentando o efeito da não linearidade geométrica na resposta. Uma análise qualitativa é desenvolvida, comparando as respostas da análise de vibração não linear do modelo contínuo com as do modelo de dois graus de liberdade. Essa análise comparativa indica a existência de múltiplos NNMs e multimodos. A influência desses modos e simetrias inerentes à torre é investigada através de uma análise paramétrica da torre sob excitação harmônica lateral. Os resultados mostram que a torre exibe uma resposta altamente não linear, mesmo sob baixos níveis de carga, o que deve ser considerado com cuidado na fase de projeto e indica a necessidade de investigações adicionais da resposta dinâmica não-linear dessas estruturas, considerando as diferentes distribuições dos cabos utilizadas na prática. / [en] The guyed towers are among the tallest man-made structures. These structures are usually very slender and their guy/mast interaction leads to highly nonlinear behaviors. Due this, simplified models are developed for simulating these structures. The discrete model of tow-degree of freedom investigated by several authors exhibits characteristic phenomena of nonlinear structures such as a superabundance of similar nonlinear normal modes and non-similar normal modes (NMNs), bifurcations of NMNs, internal resonance, and modal interaction. The present work aims to investigate the behavior of a continuous structural model of a tower with one to three guyed levels. The nonlinear finite element method (FEM) is used to parametric analyzes of the influence on static and dynamic responses, linear and nonlinear, of the geometric and materials characteristics of the guys, of the mast and guys self-weight and initial imperfections of the tower s natural frequencies and critical loads. The symmetries generated by the uniform distribution of guys have a great influence on the response, given rise to coincident critical loads and natural frequencies. This generates modal interaction in the buckling and 1:1 internal resonance, increasing the effect of the geometric nonlinearity on the response. A qualitative analysis is developed, comparing as the response of the nonlinear vibration of the continuous model as those of the two degrees of freedom model. This comparative analysis indicates the existence of the multiple NNMs and multimodes. The influence of theses modes and tower inherent symmetries are investigated through a parametric analysis of the tower under lateral harmonic excitation. tower modes. The results show that the tower exhibits a highly nonlinear response, even at low load levels, which must be considered with care in the design stage and indicates the necessary of further investigations of the nonlinear dynamic response of these structures considering the different guys distribution used in practice.
|
9 |
Analyse de structures vibrantes dotées de non-linéarités localisées à jeu à l'aide des modes non-linéaires / Analysis of vibrating structures with localized nonlinearities using nonlinear normal modesMoussi, El hadi 17 December 2013 (has links)
Le travail de cette thèse a été réalisé dans le cadre d'une collaboration entre EDF R&D et le LMA de Marseille (CNRS). Le but était de développer des outils théoriques et numériques pour le calcul de modes non-linéaires de structures industrielles possédant des non-linéarités localisées à jeu. La méthode de calcul utilisée est une combinaison de la méthode d'équilibrage harmonique (EH) et de la méthode asymptotique numérique (MAN), appelée EHMAN. Elle est réputée pour sa robustesse sur les problèmes réguliers. L'enjeu de ce travail de thèse est de l'appliquer sur des problèmes non-réguliers régularisés de type butée à jeu pour lequel un grand nombre d'harmonique est nécessaire. Des améliorations ont été apportées à la méthode de base pour rendre effectif le traitement de modèles à "grand" nombre de degrés de liberté (DDL). Les développements réalisés pendant la thèse ont été capitalisés par la création de nouveaux opérateurs dans Code_Aster.Une étude approfondie d'un système à 2 degrés de liberté a permis de faire émerger quelques caractéristiques des systèmes non-linéaires à jeu. Celles-ci ont servi entre autre à établir une méthodologie pour l'étude de systèmes à grand nombre de DDL. Pour finir, la potentialité des modes non-linéaires comme outil de diagnostic vibratoire est démontrée avec l'étude d'un tube cintré de générateur de vapeur. Le calcul des modes non-linéaires a monté l'existence d'une interaction entre un mode hors-plan (basse fréquence) et un mode plan (haute fréquence) expliquant des régimes vibratoires non-standards. Ce résultat, impossible à obtenir avec les outils de l'analyse modale linéaire, est confirmé expérimentalement. / This work is a collaboration between EDF R&D and the Laboratory of Mechanics and Acoustics. The objective is to develop theoretical and numerical tools to compute nonlinear normal modes (NNMs) of structures with localized nonlinearities.We use an approach combining the harmonic balance and the asymptotic numerical methods, known for its robustness principally for smooth systems. Regularization techniques are used to apply this approach for the study of nonsmooth problems. Moreover, several aspects of the method are improved to allow the computation of NNMs for systems with a high number of degrees of freedom (DOF). Finally, the method is implemented in Code_Aster, an open-source finite element solver developed by EDF R&D.The nonlinear normal modes of a two degrees-of-freedom system are studied and some original characteristics are observed. These observations are then used to develop a methodology for the study of systems with a high number of DOFs. The developed method is finally used to compute the NNMs for a model U-tube of a nuclear plant steam generator. The analysis of the NNMs reveals the presence of an interaction between an out-of-plane (low frequency) and an in-plane (high frequency) modes, a result also confirmed by the experiment. This modal interaction is not possible using linear modal analysis and confirms the interest of NNMs as a diagnostic tool in structural dynamics.
|
10 |
Multistability in microbeams: Numerical simulations and experiments in capacitive switches and resonant atomic force microscopy systemsDevin M Kalafut (11013732) 23 July 2021 (has links)
Microelectromechanical systems (MEMS) depend on mechanical deformation to sense their environment, enhance electrical circuitry, or store data. Nonlinear forces arising from multiphysics phenomena at the micro- and nanoscale -- van der Waals forces, electrostatic fields, dielectric charging, capillary forces, surface roughness, asperity interactions -- lead to challenging problems for analysis, simulation, and measurement of the deforming device elements. Herein, a foundation for the study of mechanical deformation is provided through computational and experimental studies of MEMS microcantilever capacitive switches. Numerical techniques are built to capture deformation equilibria expediently. A compact analytical model is developed from principle multiphysics governing operation. Experimental measurements support the phenomena predicted by the analytical model, and finite element method (FEM) simulations confirm device-specific performance. Altogether, the static multistability and quasistatic performance of the electrostatically-actuated switches are confirmed across analysis, simulation, and experimentation.
<p><br></p>
<p>The nonlinear multiphysics forces present in the devices are critical to the switching behavior exploited for novel applications, but are also a culprit in a common failure mode when the attractive forces overcome the restorative and repulsive forces to result in two elements sticking together. Quasistatic operation is functional for switching between multistable states during normal conditions, but is insufficient under such stiction-failure. Exploration of dynamic methods for stiction release is often the only option for many system configurations. But how and when is release achieved? To investigate the fundamental mechanism of dynamic release, an atomic force microscopy (AFM) system -- a microcantilever with a motion-controlled base and a single-asperity probe tip, measured and actuated via lasers -- is configured to replicate elements of a stiction-failed MEMS device. Through this surrogate, observable dynamic signatures of microcantilever deflection indicate the onset of detachment between the probe and a sample.</p>
|
Page generated in 0.0578 seconds