• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 3
  • 1
  • Tagged with
  • 30
  • 30
  • 15
  • 13
  • 10
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact of input ground motions and site variability on seismic site response

Kottke, Albert R. (Albert Richard) 27 August 2015 (has links)
Seismic site response analysis allows an engineer to assess the effect of local soil conditions on the ground motions expected during an earthquake. In seismic site response analysis, an input ground motion on rock is propagated through a site specific soil column. The computed response at the surface is dependent on both the input ground motion and the soil properties that characterize the site. However, there is uncertainty in both the input ground motion and the soil properties, as well as natural variability in the soil properties across a site. To account for the uncertainty in the input ground motions, engineers use a suite of motions that are selected and scaled to fit a scenario input motion. This study introduces a semi-automated method to select and scale the input motions to fit a target input motion and its variability. The proposed method is intended to replace tedious trials of combinations by hand with combinations performed by a computer. However, as in the traditional selection methods, the final selection of the combination is done by the engineer.The effect of the selected ground motion combination on the computed surface response spectrum from the site response analysis, and its variability, was investigated in this study. The results show by using a combination with as few as five motions, the median surface response spectrum can be predicted with an error of 10%. Additionally, the manner used to scale the input motions does not impact the accuracy of the median surface response spectrum, as long as the median response spectrum of the input combination agrees with the target input response spectrum. However, if the standard deviation of the surface response spectrum is to be considered (e.g., to develop median plus one standard deviation spectra), a input combination of at least 20 motions is recommended and the combination must be scaled such that the standard deviation of the input combination matches the standard deviation of the input target spectrum. Monte Carlo simulations were used to assess the impact of soil property variability on surface spectra computed by seismic site response. The results from this study indicate that by accounting for the variability of the shear-wave velocity profile of a site can cause a significant decrease in the median surface response spectrum, as well as a slight increase in the standard deviation of the surface response spectrum at periods less than the site period. By considering the variability of the nonlinear properties (shear modulus reduction and damping ratio) the median response spectrum decreased only slightly, but the standard deviation increased in a manner similar to the increase observed when considering the variability of the shear-wave velocity profile. Simultaneously considering the variability of the shear-wave velocity profile and nonlinear properties resulted in a median surface response spectrumsimilar to the median surface response spectrumcomputed with considering the variability of the shear-wave velocity alone. However, the standard deviation of the surface response spectrum was larger than the standard deviation computed by independent consideration of the variability of the shear-wave velocity or nonlinear properties.
2

Effects of Site Response on the Correlation Structure of Ground Motion Residuals

Motamed, Maryam 06 February 2014 (has links)
Seismic hazard analyses require an estimate of earthquake ground motions from future events. These predictions are achieved through Ground Motion Prediction Equations, which include a prediction of the median and the standard deviation of ground motion parameters. The differences between observed and predicted ground motions, when normalized by the standard deviation, are referred to as epsilon (𝜖). For spectral accelerations, the correlation structure of normalized residuals across oscillator periods is important for guiding ground motion selection. Correlation structures for large global datasets have been studied extensively. These correlation structures reflect effects that are averaged over the entire dataset underlying the analyses. This paper considers the effects of site response, at given sites, on the correlation structure of normalized residuals. This is achieved by performing site response analyses for two hypothetical soil profiles using a set of 85 rock input motions. Results show that there is no significant difference between correlation coefficients for rock ground motions and correlation coefficients after considering the effects of site response for the chosen sites. / Master of Science
3

Dynamic Characteristics and Evaluation of Ground Response for Sands with Non-Plastic Fines

Arefi, Mohammad Jawad January 2014 (has links)
Deformational properties of soil, in terms of modulus and damping, exert a great influence on seismic response of soil sites. However, these properties for sands containing some portion of fines particles have not been systematically addressed. In addition, simultaneous modelling of the modulus and damping behaviour of soils during cyclic loading is desirable. This study presents an experimental and computational investigation into the deformational properties of sands containing fines content in the context of site response analysis. The experimental investigation is carried on sandy soils sourced from Christchurch, New Zealand using a dynamic triaxial apparatus while the computational aspect is based on the framework of total-stress one-dimensional (1D) cyclic behaviour of soil. The experimental investigation focused on a systematic study on the deformational behaviour of sand with different amounts of fines content (particle diameter ≤ 75µm) under drained conditions. The silty sands were prepared by mixing clean sand with three different percentages of fines content. A series of bender element tests at small-strain range and stress-controlled dynamic triaxial tests at medium to high-strain ranges were conducted on samples of clean sand and silty sand. This allowed measurements of linear and nonlinear deformational properties of the same specimen for a wide strain range. The testing program was designed to quantify the effects of void ratio and fines content on the low-strain stiffness of the silty sand as well as on the nonlinear stress-strain relationship and corresponding shear modulus and damping properties as a function of cyclic shear strains. Shear wave velocity, Vs, and maximum shear modulus, Gmax, of silty sand was shown to be significantly smaller than the respective values for clean sands measured at the same void ratio, e, or same relative density, Dr. However, the test results showed that the difference in the level of nonlinearity between clean sand and silty sands was small. For loose samples prepared at an identical relative density, the behaviour of clean sand was slightly less nonlinear as compared to sandy soils with higher fines content. This difference in the nonlinear behaviour of clean sand and sandy soils was negligible for dense soils. Furthermore, no systematic influence of fines content on the material damping curve was observed for sands with fines content FC = 0 to 30%. In order to normalize the effects of fines on moduli of sands, equivalent granular void ratio, e*, was employed. This was done through quantifying the participation of fines content in the force transfer chain of the sand matrix. As such, a unified framework for modelling of the variability of shear wave velocity, Vs, (or shear modulus, Gmax) with void ratio was achieved for clean sands and sands with fines, irrespective of their fines content. Furthermore, modelling of the cyclic stress-strain behaviour based on this experimental program was investigated. The modelling effort focused on developing a simple constitutive model which simultaneously models the soil modulus and damping relationships with shear strains observed in laboratory tests. The backbone curve of the cyclic model was adopted based on a modified version of Kondner and Zelasko (MKZ) hyperbolic function, with a curvature coefficient, a. In order to simulate the hysteretic cycles, the conventional Masing rules (Pyke 1979) were revised. The parameter n, in the Masing’s criteria was assumed to be a function of material damping, h, measured in the laboratory. As such the modulus and damping produced by the numerical model could match the stress-strain behaviour observed in the laboratory over the course of this study. It was shown that the Masing parameter n, is strain-dependent and generally takes values of n ≤ 2. The model was then verified through element test simulations under different cyclic loadings. It was shown that the model could accurately simulate the modulus and the damping simultaneously. The model was then incorporated within the OpenSees computational platform and was used to scrutinize the effects of damping on one-dimensional seismic site response analysis. For this purpose, several strong motion stations which recorded the Canterbury earthquake sequence were selected. The soil profiles were modelled as semi-infinite horizontally layered deposits overlying a uniform half-space subjected to vertically propagating shear waves. The advantages and limitations of the nonlinear model in terms of simulating soil nonlinearity and associated material damping were further scrutinized. It was shown that generally, the conventional Masing criteria unconservatively may underestimate some response parameters such as spectral accelerations. This was shown to be due to larger hysteretic damping modelled by using conventional Masing criteria. In addition, maximum shear strains within the soil profiles were also computed smaller in comparison to the values calculated by the proposed model. Further analyses were performed to study the simulation of backbone curve beyond the strain ranges addressed in the experimental phase of this study. A key issue that was identified was that relying only on the modulus reduction curves to simulate the stress-strain behaviour of soil may not capture the actual soil strength at larger strains. Hence, strength properties of the soil layer should also be incorporated to accurately simulate the backbone curve.
4

Evaluation of one-dimensional site response methodologies using borehole arrays

Zalachoris, Georgios 02 July 2014 (has links)
Numerical modeling techniques commonly used to compute the response of soil and rock media under earthquake shaking are evaluated by analyzing the observations provided by instrumented borehole arrays. The NIED Kik-Net database in Japan is selected as the main source of borehole array data for this study. The stiffness of the site and the availability of high intensity motions are the primary factors considered towards the selection of appropriate Kik-Net borehole arrays for investigation. Overall, 13 instrumented vertical arrays are investigated using over 750 recorded ground motions characterized by low (less than 0.05 g) to high (greater than 0.3 g) recorded peak ground accelerations at the downhole sensor. Based on data from the selected borehole arrays, site response predictions using 1-D linear elastic (LE) analysis, equivalent linear (EQL) analysis, equivalent linear analysis with frequency-dependent soil properties (EQL-FD), and fully nonlinear analysis (NL) are compared with the borehole observations. Initially, the low intensity motions are used to evaluate common assumptions regarding 1-D site response analysis. First, we identify the borehole wavefield best simulating the actual boundary condition at depth by comparing the theoretical linear-elastic (LE) and observed responses. Then, we identify the best-fit small-strain damping profiles that can incorporate the additional in-situ attenuation mechanisms. Finally, we assess the validity of the one-dimensional modeling assumption. Our analyses indicate that the appropriate boundary condition for analysis of a borehole array depends on the depth of the borehole sensor and that, for most of the considered vertical arrays, the one-dimensional assumption reasonably simulates the actual wave propagation pattern. In the second part of this study, we evaluate the accuracy of the EQL, EQL-FD and NL site response methods by quantifying the misfit (i.e., residual) between the simulations and observations at different levels of shaking. The evaluation of the performance of the theoretical models is made both on a site-by-site basis and in an aggregated manner. Thereafter, the variability in the predicted response from the three site response methods is assessed. Comparisons with the observed responses indicate that the misfit of simulations can be significant at short periods and large strains. Moreover, all models seem to be characterized by the same level of variability irrespectively of the level of shaking. Finally, several procedures that can be used to improve the accuracy of the one-dimensional EQL, EQL-FD and NL site response analyses, are investigated. First, an attempt to take into account the shear strength of the soil materials at large shear strains is made. Additionally, several modifications to the EQL-FD approach are proposed. The proposed modifications are evaluated against recordings from the borehole arrays. Our analyses indicate that the accuracy of the theoretical models can be, partly, increased by incorporating the proposed modifications. / text
5

Issues related to site property variability and shear strength in site response analysis

Griffiths, Shawn Curtis 18 September 2015 (has links)
Nonlinear site response analyses are generally preferred over equivalent linear analyses for soft soil sites subjected to high-intensity input ground motions. However, both nonlinear and equivalent linear analyses often result in large induced shear strains (3-10%) at soft sites, and these large strains may generate unusual characteristics in the predicted surface ground motions. One source of the overestimated shear strains may be attributed to unrealistically low shear strengths implied by commonly used modulus reduction curves. Therefore, modulus reduction and damping curves can be modified at shear strains greater than 0.1% to provide a more realistic soil model for site response. However, even after these modifications, nonlinear and equivalent linear site response analyses still may generate unusual surface acceleration time histories and Fourier amplitude spectra at soft soil sites when subjected to high-intensity input ground motions. As part of this work, equivalent linear and nonlinear 1D site response analyses for the well-known Treasure Island site demonstrate the challenges associated with accurately modeling large shear strains, and subsequent surface response, at soft soil sites. Accounting for the uncertainties associated with the shear wave velocity profile is an important part of a properly executed site response analyses. Surface wave data from Grenoble, France and Mirandola, Italy have been used to determine shear wave velocity (Vs) profiles from inversion of surface wave data. Furthermore, Vs profiles from inversion have been used to determine boundary, median and statistically-based randomly generated profiles. The theoretical dispersion curves from the inversion analyses as well as the boundary, median and randomly generated Vs profiles are compared with experimentally measured surface wave data. It is found that the median theoretical dispersion curve provides a satisfactory fit to the experimental data, but the boundary type theoretical dispersion curves do not. Randomly generated profiles result in some theoretical dispersion curves that fit the experimental data, and many that do not. Site response analyses revealed that the greater variability in the response spectra and amplification factors were determined from the randomly generated Vs profiles than the inversion or boundary Vs profiles.
6

Quantification of Uncertainties for Conducting Partially Non-ergodic Probabilistic Seismic Hazard Analysis

Bahrampouri, Mahdi 01 July 2021 (has links)
Estimating local site effects and modifying the uncertainty in ground motion predictions are two indispensable parts of partially non-ergodic site-specific PSHA. Local site effects can be estimated using site response simulations or recorded ground motions at the site. When such predictions are available, the aleatory variability of ground motions used in PSHA can be changed to the single station sigma value. However, in these cases, the epistemic uncertainty in predicting site effects must be incorporated into the hazard analyses. This research focuses on the challenges specific to conducting partially non-ergodic site-specific PSHA using recorded ground motions or site response analysis. The main challenge in estimating local site effects using recorded data is whether ground motions collected in a relatively short time can be used to estimate site effects for long return period events. We first develop a database for recorded ground motions at the KiK-net array to investigate this question and use this database to develop a predictive model for the Fourier Amplitude Spectra of ground motions. The ground motion model (GMM) residuals are used to investigate the stability of site terms across different tectonic regimes. We observe that empirical site terms are stable across different tectonic regimes. This observation allows the use of ground motions from any tectonic regime (whether they belong to the tectonic regime that controls the hazard or not) to estimate local site effects. Moreover, in Fourier amplitude, site effects are not dependent on event magnitude and source to site distance; therefore, estimates of site effects from low magnitude events can be easily extrapolated to larger events. The Fourier amplitude GMM developed in this study adds to the library of Fourier amplitude models to be used in future partially non-ergodic site-specific PSHAs. In practice, one of the most common tools for simulating wave propagation is 1-D site response analysis. Two central assumptions in 1-D site response analysis are that the soil profile is comprised of horizontal soil layers of infinite extent and that the vertically propagating SH-waves control the horizontal component of ground motion. SH-waves tend to propagate vertically near the surface because as earthquake waves hit softer layers traveling from the source to the site, they refract until the path becomes steeply inclined. The validity of both assumptions in 1-D site response depends on the geological setting at the site and the geology between the earthquake source and the site, raising the question of which sites are suitable for 1-D site response analysis and what the model error in 1-D site response analysis is. We use the GMM developed for FAS to estimate observed and empirical site terms. The empirical site effects are then compared with the theoretical site effects to determine whether sites are amenable to 1-D site response analyses, and to quantify the model error in the analyses. / Doctor of Philosophy / It is impossible to predict future earthquake-induced ground motions due to randomness in the process and a lack of knowledge. In fact, there are significant uncertainties not only in predicting the location, time, and magnitude of a future earthquake but also in predicting the intensity of ground motion induced by a given future earthquake. Therefore, assessing the safety of the human environment against earthquake hazards requires a method that considers all sources of uncertainties. To this end, Earthquake Engineers have developed Probabilistic Seismic Hazard Analysis(PSHA) framework. Structural engineers use the results of PSHA to design a new structure or assess the safety of an existing building. The accuracy of PSHA estimations leads to designs that are both safe and cost-efficient. The distribution of possible ground motions induced by a given earthquake scenario significantly controls the result of PSHA. This distribution should consider the effect of source, source to site path, and local site effects. This research focuses on improving PSHA results by estimating local site effects using recorded ground motions or simulating wave propagation in the site. In estimating local site effects using recorded data, the local site effect observed in ground motions collected in a relatively short time window is used to estimate hazards from all scenarios. However, the collected ground motions usually belong to frequent low magnitude events that are different from large magnitude events that control the hazard. This difference requires either using a measure of local site effect that is independent of the magnitude and distance of the earthquake or considering the effect of magnitude and distance on the local site effect estimate. Moreover, since frequent events sample different sources and paths than large events, we need to make sure the local site effect is consistent across different sources and paths. This research develops Ground Motion Models(GMMs) for Fourier amplitude, a linear function of ground motion times series, using Japanese ground motions. The ratio of Fourier amplitude at the surface over bedrock is a measure of local site effect that is not dependant on magnitude and distance. The model is then used to see if the trade-off between source and site effect and path and site effect is significant or not. In practice, one of the most common tools for simulating wave propagation is 1-D site response analysis. Two central assumptions in 1-D site response analysis are that the soil profile comprises horizontal soil layers of infinite extent and that the vertically propagating horizontal shear waves (SH-waves) control the horizontal component of ground motion. SH-waves tend to propagate vertically near the surface because as earthquake waves hit softer layers traveling from the source to the site, they refract until the path becomes vertically inclined. The validity of both assumptions in 1-D site response depends on the geological setting at the site and the geology between the earthquake source and the site, raising the question of which sites are suitable for 1-D site response analysis and what the model error in 1-D site response analysis is. We use the GMM developed for FAS to estimate empirical local site effects. The empirical site effects are then compared with the theoretical site effects to determine whether sites are amenable to 1-D site response analyses and quantify the model error in the analyses.
7

A comparison of seismic site response methods

Kottke, Albert Richard 09 November 2010 (has links)
Local soil conditions influence the characteristics of earthquake ground shaking and these effects must be taken into account when specifying ground shaking levels for seismic design. These effects are quantified via site response analysis, which involves the propagation of earthquake motions from the base rock through the overlying soil layers to the ground surface. Site response analysis provides surface acceleration-time series, surface acceleration response spectra, and/or spectral amplification factors based on the dynamic response of the local soil conditions. This dissertation investigates and compares the results from different site response methods. Specifically, equivalent-linear time series analysis, equivalent-linear random vibration theory analysis, and nonlinear time series analysis are considered. In the first portion of this study, hypothetical sites and events are used to compare the various site response methods. The use of hypothetical events at hypothetical sites allowed for the seismic evaluation process used in engineering practice to be mimicked. The hypothetical sites were modeled after sites with characteristics that are representative of sites in the Eastern and Western United States. The input motions selected to represent the hypothetical events were developed using the following methods: stochastically-simulated time series, linearly-scaled recorded time series, and spectrally-matched time series. The random vibration theory input motions were defined using: seismological source theory, averaging of the Fourier amplitude spectra computed from scaled time series, and a response spectrum compatible motion. All of the different input motions were then scaled to varying intensity levels and propagated through the sites to evaluate the relative differences between the methods and explain the differences. Data recorded from borehole arrays, which consist of instrumentation at surface and at depth within the soil deposit, are used to evaluate the absolute bias of the site response methods in the second portion of this study. Borehole array data is extremely useful as it captures both the input motion and the surface motion, and can be used to study solely the wave propagation process within the soil deposit. However, comparisons using the borehole data are complicated by the assumed wavefield at the base of the array. In this study, sites are selected based on site conditions and the availability of high intensity input motions. The site characteristics are then developed based on site specific information and data from laboratory soil testing. Comparisons between the observed and computed response are used to first assess the wavefield at the base of the array, and then to evaluate the accuracy of the site response methods. / text
8

Seismic Site Response Evaluation Using Ambient Vibrations And Earthquakes : Applications in Active And Vulnerable Regions with Emphasis on the 2001 Bhuj (India) Earthquake

Natarajan, Thulasiraman January 2016 (has links) (PDF)
Local site conditions are known to influence ground motion during earthquake events and increase the severity of damage. Data from earthquakes are useful to study the response but they are available only from active regions. Ubiquitous ambient vibrations on the other hand offer a more practical approach to quantify site responses. This thesis explores the use of various methods for obtaining site responses. The primary area of study is the Kachchh rift basin, NW India, a Mesozoic rift that features significant lateral variations in surface geology and has experienced ground responses during 1819 and 2001 earthquakes. The Mw 7.6, 2001 event was followed by hundreds of aftershocks, which were recorded by temporary networks. In this study we have used earthquake signals as well as ambient vibrations to understand site response in various parts of the basin. In addition we have collected data from a few sites from the Indo-Gangetic plains and Kathmandu valley, both affected by large earthquakes, 1934 the M ~ 8 (Bihar) and 2015, Mw 7.8 (Nepal). Velocity and acceleration records from a network of eight stations in the Kachchh Rift were used to evaluate site responses using Standard Spectral Ratio (SSR) and Horizontal to Vertical spectral ratio (HVSR-E) methods. Ambient vibrations were analyzed following Nakamura’s H/V method (HVSR-AV), for data collected from 110 sites that represent different field conditions within the Kachchh Rift. Fundamental resonance frequency (f0) varied between 0.12 – 2.30 Hz, while the amplification factor (A0) was in the range of 2.0 – 9.1. We found that higher A0 and liquefaction index (Kg) values were mostly associated with higher liquefaction potential. Using a close network of stations, we studied the role of site response in damage to the Bhuj city that suffered maximum damage in 2001; our results suggest that site response was not a significant factor. Studies based on passive data were complemented by Multi-channel Analysis of Surface Waves (MASW) to map shear wave velocities of the various subsurface units up to depths of 10m (Vs10) and 30m (Vs30). Our results imply average Vs could be a good proxy to characterize site amplifications where sediment thicknesses are shallow. Power law relationship between f0 and thickness (h) suggest a strong positive correlation (r = 0.89) adding credence to HVSR-AV method, making it a cost-effective alternative to MASW to infer site conditions. Further, to understand the influence of topography on site effects, we analyzed data from hills, valleys and their edges, both from the Kachchh rift and Kathmandu valley. Sites on the edges of valleys showed multiple, fuzzy peaks in the low frequency range (< 1 Hz) and broad peaks attributable to sites prone to higher damage. Spectrograms generated through Huang-Hilbert Transforms (HHT) suggested focusing of energy in narrow frequency bands on the edges, while valleys tend to scatter energy over wide frequencies. Although our current results are based on limited observations, we recognize spectral analysis as a powerful tool to quantify site effects in regions with significant topography. It is known that coseismic liquefaction could lead to nonlinear behavior wherein the near-surface soil layer loses its shear strength, causing a reduction of its fundamental resonance frequency. We used data from selected sites of coseismic liquefaction to highlight the significance of nonlinear effects in site response. Earthquake signals and ambient vibrations from Umedpur, a region that experienced intense liquefaction during 2001 were used in this analysis. Here we followed an empirical decomposition method based on HHT and signals were decomposed as many intrinsic mode functions (IMFs) that showed characteristic peaks for events of various values of PGAs. Thus, the first IMF for events with relatively higher PGAs (0.03g) showed distinct peaks for the S wave coda part, which were not noted for those with lower PGA (0.01g). These observations in a region of coseismic liquefaction are useful in developing models for quantifying nonlinear behavior. In conclusion, site response studies using different types of data and processing techniques in regions affected by recent earthquakes brings out the scope and limitations of each of these sets of data and techniques. This study suggests that ambient vibrations provide reasonable estimates of site response and can be reliably used in regions where earthquake data are not available.
9

Comparison of seismic site response analysis and downhole array recordings for stiff soil sites

Faker, Jeremy Stuart 12 September 2014 (has links)
Accurately predicting surface ground motions is critical for many earthquake engineering applications. Equivalent-linear (EQL) site response analysis is a numerical technique used to compute surface ground motions from input motions at bedrock using the site-specific dynamic soil properties. The purpose of this study was to investigate the accuracy of EQL site response analysis for stiff soil sites by comparing computed and observed transfer functions and response spectral amplification. The Kiban Kyoshin network (KiK-net) in Japan is a seismograph network consisting of downhole array sites with strong-motion accelerometers located at the ground surface and at depth. Recorded motions and shear wave velocity profiles are available for most sites. Observed transfer functions and response spectral amplification were computed for 930 individual seismic recordings at 11 stiff soil KiK-net sites. Computed transfer functions and response spectral amplification were calculated from EQL site response analysis by specifying the KiK-net base sensor motion as the input motion. Sites were characterized using the measured shear wave velocity profiles and nonlinear soil properties estimated from empirical models. Computed and observed transfer functions and response spectral amplification were compared at different levels of strain for each site. The average difference between the observed and computed response spectral amplification across the 11 sites were compared at different levels of strain. Overall, there is reasonable agreement between the computed and observed transfer functions and response spectral amplification. There is agreement between the computed and observed site periods, but with over-prediction of the computed response at the observed site periods. Higher modes often computed by the theoretical model were not always observed by the recordings. There is very good agreement between the computed and observed transfer functions and response spectral amplification for periods larger than the site periods. There is less agreement between the computed and observed transfer functions and response spectral amplification for periods less than the site periods. There is mostly over-prediction of the response spectral amplification at these periods, although some under-prediction also occurred. Across all 11 sites the predicted spectral amplification is within +/-20% at shear strains less than 0.01%. At shear strains between approximately 0.01 and 0.03%, the spectral amplification is over-predicted for these sites, in some instances by as little as 5% and in other instances by a factor of 2 or more. / text
10

Fault zone damage, nonlinear site response, and dynamic triggering associated with seismic waves

Wu, Chunquan 05 July 2011 (has links)
My dissertation focuses primarily on the following three aspects associated with passing seismic waves in the field of earthquake seismology: temporal changes of fault zone properties, nonlinear site response, and dynamic triggering. Quantifying the temporal changes of material properties within and around active fault zones (FZ) is important for better understanding of rock rheology and estimating the strong ground motion that can be generated by large earthquakes. As high-amplitude seismic waves propagate through damaged FZ rocks and/or shallow surface layers, they may produce additional damage leading to nonlinear wave propagation effects and temporal changes of material properties (e.g., seismic velocity, attenuation). Previous studies have found several types of temporal changes in material properties with time scales of tens of seconds to several years. Here I systematically analyze temporal changes of fault zone (FZ) site response along the Karadere-Düzce branch of the North Anatolian fault that ruptured during the 1999 İzmit and Düzce earthquake sequences. The coseismic changes are on the order of 20-40%, and are followed by a logarithmic recovery over an apparent time scale of ~1 day. These results provide a bridge between the large-amplitude near-instantaneous changes and the lower-amplitude longer-duration variations observed in previous studies. The temporal changes measured from this high-resolution spectral ratio analysis also provide a refinement for the beginning of the longer more gradual process typically observed by analyzing repeating earthquakes. An improved knowledge on nonlinear site response is critical for better understanding strong ground motions and predicting shaking induced damages. I use the same sliding-window spectral ratio technique to analyze temporal changes in site response associated with the strong ground motion of the Mw6.6 2004 Mid-Niigata earthquake sequence recorded by the borehole stations in Japanese Digital Strong-Motion Seismograph Network (KiK-Net). The coseismic peak frequency drop, peak spectral ratio drop, and the postseismic recovery time roughly scale with the input ground motions when the peak ground velocity (PGV) is larger than ~5 cm/s, or the peak ground acceleration (PGA) is larger than ~100 Gal. The results suggest that at a given site the input ground motion plays an important role in controlling both the coseismic change and postseismic recovery in site response. In a follow-up study, I apply the same sliding-window spectral ratio technique to surface and borehole strong motion records at 6 KiK-Net sites, and stack results associated with different earthquakes that produce similar PGAs. In some cases I observe a weak coseismic drop in the peak frequency when the PGA is as small as ~20-30 Gal, and near instantaneous recovery after the passage of the direct S waves. The percentage of drop in the peak frequency starts to increase with increasing PGA values. A coseismic drop in the peak spectral ratio is also observed at 2 sites. When the PGA is larger than ~60 Gal to more than 100 Gal, considerably stronger coseismic drops of the peak frequencies are observed, followed by a logarithmic recovery with time. The observed weak reductions of peak frequencies with near instantaneous recovery likely reflect nonlinear response with essentially fixed level of damage, while the larger drops followed by logarithmic recovery reflect the generation (and then recovery) of additional rock damage. The results indicate clearly that nonlinear site response may occur during medium-size earthquakes, and that the PGA threshold for in situ nonlinear site response is lower than the previously thought value of ~100-200 Gal. The recent Mw9.0 off the Pacific coast of Tohoku earthquake and its aftershocks generated widespread strong shakings as large as ~3000 Gal along the east coast of Japan. I systematically analyze temporal changes of material properties and nonlinear site response in the shallow crust associated with the Tohoku main shock, using seismic data recorded by the Japanese Strong Motion Network KIK-Net. I compute the spectral ratios of windowed records from a pair of surface and borehole stations, and then use the sliding-window spectral ratios to track the temporal changes in the site response of various sites at different levels of PGA The preliminary results show clear drop of resonant frequency of up to 70% during the Tohoku main shock at 6 sites with PGA from 600 to 1300 Gal. In the site MYGH04 where two distinct groups of strong ground motions were recorded, the resonant frequency briefly recovers in between, and then followed by an apparent logarithmic recovery. I investigate the percentage drop of peak frequency and peak spectral ratio during the Tohoku main shock at different PGA levels, and find that at most sites they are correlated. The third part of my thesis mostly focuses on how seismic waves trigger additional earthquakes at long-range distance, also known as dynamic triggering. Previous studies have shown that dynamic triggering in intraplate regions is typically not as common as at plate-boundary regions. Here I perform a comprehensive analysis of dynamic triggering around the Babaoshan and Huangzhuang-Gaoliying faults southwest of Beijing, China. The triggered earthquakes are identified as impulsive seismic arrivals with clear P- and S-waves in 5 Hz high-pass-filtered three-component velocity seismograms during the passage of large amplitude body and surface waves of large teleseismic earthquakes. I find that this region was repeatedly triggered by at least four earthquakes in East Asia, including the 2001 Mw7.8 Kunlun, 2003 Mw8.3 Tokachi-oki, 2004 Mw9.2 Sumatra, and 2008 Mw7.9 Wenchuan earthquakes. In most instances, the microearthquakes coincide with the first few cycles of the Love waves, and more are triggered during the large-amplitude Rayleigh waves. Such an instantaneous triggering by both the Love and Rayleigh waves is similar to recent observations of remotely triggered 'non-volcanic' tremor along major plate-boundary faults, and can be explained by a simple Coulomb failure criterion. Five earthquakes triggered by the Kunlun and Tokachi-oki earthquakes were recorded by multiple stations and could be located. These events occurred at shallow depth (< 5 km) above the background seismicity near the boundary between NW-striking Babaoshan and Huangzhuang-Gaoliying faults and the Fangshan Pluton. These results suggest that triggered earthquakes in this region likely occur near the transition between the velocity strengthening and weakening zones in the top few kms of the crust, and are likely driven by relatively large dynamic stresses on the order of few tens of KPa.

Page generated in 0.07 seconds