• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 18
  • 12
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 124
  • 124
  • 124
  • 33
  • 22
  • 18
  • 16
  • 14
  • 12
  • 11
  • 11
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Imobilização e engenharia de proteínas de glucansucrases

Graebin, Natália Guilherme January 2018 (has links)
Glucansucrases são enzimas que atuam em reações de síntese de polissacarídeos e oligossacarídeos. Para que esses biocatalisadores sejam aplicados em escala industrial, é desejável ótimas estabilidades térmica e operacional, o que pode ser alcançado com a imobilização de enzimas. Como alternativa aos suportes sólidos amplamente estudados, está a quitosana, polímero que não apresenta toxicidade e possui alta biocompatibilidade e alta afinidade com proteínas. Outra possibilidade promissora na imobilização de enzimas, é a síntese dos agregados enzimáticos entrecruzados (CLEAs), os quais apresentam alta atividade catalítica e alta estabilidade. Contudo, uma peculiaridade das glucansucrases quando produzidas em meio contendo sacarose é a camada de polímero que as envolve, e que bloqueia o acesso aos grupos reativos na superfície da proteína. No caso da expressão heteróloga das glucansucrases em Escherichia coli essa dificuldade pode ser contornada. Além disso, o uso da mutagênese sítio-dirigida pode proporcionar modificações de aminoácidos na superfície da enzima, tais como os resíduos Lys, Cys, His, com o intuito de que melhorias na imobilização sejam alcançadas. Sendo assim, na primeira etapa desse trabalho, uma extensa discussão é apresentada em relação às metodologias de imobilização de dextransucrase encontradas na literatura. A seguir, estudos referentes à imobilização da dextransucrase de Leuconostoc mesenteroides B-512 F em esferas de quitosana ativadas com glutaraldeído foram realizados. Esse imobilizado apresentou alta atividade catalítica (197 U/g) quando utilizada a carga de proteína de 400 mg/g de suporte. Além disso, observou-se que a imobilização covalente e os açúcares maltose e glicose promoveram proteção à enzima em temperaturas de 40 ºC e 50 ºC. Na etapa seguinte, a produção e a caracterização de CLEAs de dextransucrase de L. mesenteroides B-512 F foram investigados. Demonstrou-se que o tratamento com a dextranase foi essencial para a imobilização da glucansucrase e que o isopropanol foi o melhor agente precipitante. Os CLEAs apresentaram pH e temperatura ótimos de 3,0 e 60 ºC, respectivamente, enquanto que a dextransucrase imobilizada nas esferas de quitosana funcionalizada com glutaraldeído apresentaram os valores de 4,5 e 20 ºC. Ambas formas imobilizadas apresentaram boa estabilidade operacional na síntese de oligossacarídeos uma vez que após 10 ciclos, 40 % de atividade residual foi observada. Por fim, estão apresentados estudos sobre a modelagem das estruturas tridimensionais e a mutagênese sítio-dirigida das glucansucrases DSR-S vardel Δ4N and ASR C-APY del. Os modelos preditos demonstraram boa qualidade e a mutagênese sítio-dirigida não promoveu perdas significativas na atividade enzimática dos mutantes. Somente o mutante DSR_S326C mostrouse inativo. Os resultados obtidos sugerem que a imobilização da dextransucrase foi satisfatória e que cada técnica possibilita diferentes características ao imobilizado. Além disso, os imobilizados foram adequados para síntese de dextrana e oligossacarídeos. / Glucansucrases are enzymes that catalyze the synthesis of polysaccharides and oligosaccharides. In order to assure continuous processing and reuse of the biocatalyst in industrial applications, enzyme immobilization techniques are required to promote good thermal and operational stabilities. Among the several solid supports for enzyme immobilization, chitosan shows interesting properties because it is non-toxic, it is biocompatible, and it has high protein affinity. Other possibility is the production of cross-linked enzyme aggregates (CLEAs), which presents high catalytic activity and good stability. However, glucansucrases have a particularity when produced in sucrose medium, since a polymer layer surrounds the protein, blocking the access to reactive groups on the enzyme surface. To overcome this problem, it is possible to make the heterologous production of glucansucrases in Escherichia coli. Likewise, the site-directed mutagenesis may promote changes in the amino acids located on the surface to improve immobilization parameters. Therefore, this work aimed to discuss the several techniques applied for dextransucrase immobilization, and to design new immobilized biocatalysts. In a first step, it is presented a review about the distinct immobilization methodologies for dextransucrase. In a second study, an investigation about dextransucrase from Leuconostoc mesenteroides B-512 F immobilized on glutaraldehyde-activated chitosan particles was carried out. The novel immobilized biocatalyst showed 197 U/g (400 mg/g dried support) of catalytic activity. The covalent immobilization promoted protection against enzyme damages at 40 ºC and 50 ºC, whereas maltose and glucose acted as stabilizers. Furthermore, it was studied the production and characterization of CLEAs dextransucrase from L. mesenteroides B-512 F. It was demonstrated that dextranase treatment was crucial for immobilization. Isopropanol was chosen as the best precipitant agent. CLEAs presented optimal pH and temperature of 3.0 and 60 ºC, respectively, whereas it was found values of 4.5 e 20 ºC for dextransucrase immobilized on glutaraldehyde-activated chitosan particles. Both immobilized biocatalysts showed good operational stability in the oligosaccharides synthesis, exhibiting 40 % of residual activity after 10 cycles. Finally, the study concerning the homology modeling and site-directed mutagenesis of glucansucrases DSR-S vardel Δ4N and ASR C-APY del is presented. The predicted models showed good quality and it has been demonstrated that the site-directed mutagenesis did not promote significant losses in the variant enzyme activities. Only one mutant (DSR_S326C) had shown no dextransucrase activity. The results obtained in this work suggest that the immobilization of dextransucrase was satisfactory, also showing that each technique promotes different characteristics to the immobilized biocatalyst. Besides, these immobilized enzymes were feasible for the synthesis of dextran and oligosaccharides.
12

Site-Directed Mutagenesis in Citrus paradisi Flavonol-Specific 3-O-Glucosyltransferase

Khaja, Sara 01 December 2014 (has links)
Flavonoids are plant secondary metabolites that have significant biochemical and physiological roles. Biosynthesis of these compounds involves several modifications, most predominantly glucosylation, which is catalyzed by glucosyltransferases (GTs). A signature amino acid sequence, the PSPG box, is used to identify putative clones and has been shown to be involved in UDP-glucose binding. Site-directed mutagenesis is used to answer questions regarding the structure and function of this family of enzymes, particularly what allows some GTs to be more selective towards some substrates than others. The grapefruit (Citrus paradisi) flavonol-3-O-glucosyltransferase (CpF3GT) is specific for flavonol substrates and will not glucosylate anthocyanidins. Comparison of the CpF3GT sequence with that of Vitis vinifera GT, which glucosylates both flavonols and anthocyanidins, provided the basis for the amino acid substitution of proline 145, alanine 374, and alanine 375 in CpF3GT to threonine, aspartate, and glycine, respectively, to test the affect on GT’s affinity for flavonoid substrates.
13

In vitro functional analysis of TP53 transfected human cancer cells

Richard Lai Unknown Date (has links)
Among the genetic mutations involved in carcinogenesis, TP53 mutation is a frequent event in many types of cancer. P53 is a transcription factor that regulates activities such as cell cycle arrest, apoptosis, DNA repair and angiogenesis. The majority of TP53 mutations are missense mutations that accumulate in cancer and are often retained in distant metastases. The effects of the mutant p53 proteins include loss of function, dominant-negative effects over wild-type (WT) p53 and possible acquisition of new properties (gain-of-function). However, some of these properties may differ from one mutant p53 protein to another. These differences could have implications for the in vivo behaviour of tumours carrying particular mutations and hence patient prognosis. The aim of this project was to investigate the phenotypic variation between cells transformed with different p53 mutants. This was achieved by constructing a range of TP53 mutants (R175H, G245S, R248W, R248Q, R273H, R282W) using PCR-based mega-primer site directed mutagenesis. These mutants were cloned into a mammalian bi-cistronic expression vector (designed for the co-expression of WT and mutant TP53 from a single plasmid) to allow transient expression in NCI-H358 cells (p53 null). Regard to the method for PCR site directed mutagenesis, the main technical difficulty with conventional methods was the insufficiency of the mutant TP53 product yield (75%). This thesis has modified these methods by carrying over the start template to a second round of PCR and increasing the MgCl2 concentration. This modified PCR-based site directed mutagenesis method has demonstrated an increased mutant TP53 product yield (100%). The tetracycline expression system is the most widely used for conditional inducible systems in mammalian cells, although high background expression has been a main problem. The ecdysone inducible system potentially allows for the study of the conditional expression of the exogenous reporter gene even though it may be cell lethal or alter the phenotype during the selection of transfectants. This system relies on two independent transfections of two plasmids namely pVgRXR and pIND. However, disruption of the regulatory element within the plasmid during stable integration can result in silence or high background expression of the exogenous reporter gene. A previous study reported a transient luciferase reporter assay to screen the cell line stably transfected with pVgRXR plasmid. However, there is no suitable method to screen the subsequent pIND transfection. This thesis has demonstrated a real time RT-PCR strategy to screen for the background expression problem associated with the ecdysone expression system. However, due to the project’s time limitations, a transient expression system rather than a stable expression system was used. The metastasis related cellular activity of WT/mutant TP53 transfected NCI-H358 cells was examined using a range of in vitro functional assays including a proliferation assay, a p21 promoter binding activity assay, a colony formation assay, and a migration assay. To extend the study, this thesis also employed real-time RT-PCR to examine the mRNA expression level of three metastatic related genes, VEGF, HER-2, and E-cadherin, in the WT/mutant TP53 transfected NCI-H358 cells. The results showed that different WT/mutant TP53 transfected cell linse could contribute to markedly different cellular activity. Among these mutants, R175H produced the highest cellular proliferation activity, the strongest dominant-negative activity over the WT on the p21 promoter binding activity and apoptosis activity, and the greatest effect on cellular migration. Furthermore, the real-time PCR results showed that the WT p53 inhibited transcription of key metastasis-related genes such as VEGF and HER-2. Considered with recent literature, this led me to postulate a feedback amplification cycle involving defective p53 and HER-2 mRNA expression. In conclusion, cancer cells with the R175H mutant could contribute to aggressive tumours. This conclusion, based on the in vitro data, is consistent with some clinical observations and animal model experiments. In the past few years it has become apparent that epigenetic changes also play a vitally important role in the cancer developmental process. Recent studies have reported the p53 protein can contribute in methylation which is one of the processes involved in epigenetic modification. This thesis employed a very new PCR-based AMP technique to examine the change of the global genome methylation pattern as a result of knocked-out p53 protein. The results showed defective p53 protein expression may associate with the global genome methylation pattern changes. However, it is important to note that antibiotic reagents, which were used for stable transfectant selection, could also contribute to the global genome methylation changes. In conclusion, this thesis has successfully developed two new methods. One allows the generation of a genetic mutant construct using PCR-based site directed mutagenesis while the other screens the tightly regulated ecdysone reporter system. In terms of effect of p53 in in vitro cell activity, this thesis has postulated that the R175H mutation is associated with much more aggressive metastatic cellular activity. Finally, this thesis also reported that loss of p53 expression could also result in changes in the global genome methylation pattern.
14

Structural Studies of Prokaryotic and Eukaryotic Oligoribonucleases

Nelersa, Claudiu M. 13 May 2009 (has links)
RNA metabolism includes all the processes required for RNA synthesis, maturation, and degradation in living cells. Ribonucleases (RNases) are involved in RNA maturation and degradation, two essential processes in gene expression and regulation in both prokaryotes and eukaryotes. Oligoribonuclease (Orn) has an important role in eliminating small oligonucleotides (nano-RNA), the last step in mRNA degradation. In E. coli, Orn is the only essential exoribonuclease. The enzyme has been shown to form a stable dimer, both in solution and in the crystalline form. Analysis of the three-dimensional structure of Orn allowed us to hypothesize that dimerization is essential for enzyme catalysis. In order to test the hypothesis, I analyzed a number of deletion and point mutants of Orn and determined that tryptophan 143 is essential for dimerization. A W143A mutant is unable to dimerize and has very little activity, similar to that of an active site mutant (D162A). The atomic structure of the W143A mutant, solved at a resolution of 1.9 Å, showed that although the overall three-dimensional fold is similar to that of the wild-type protein, minor differences exist that could account for the monomeric behavior in solution. A flexible Arg174 is repositioned into the cavity created by the missing Trp143. In this new orientation Arg174 protrudes into a hydrophobic pocket in the dimerization interface and is proposed to produce sufficient unfavorable interactions to keep the monomers apart in solution. All these data suggest that dimerization of Orn is essential for its activity. The human homolog of Orn, also known as small fragment nuclease (Sfn), has been shown to degrade short single-stranded RNA, the last step in mRNA decay. In order to determine the mechanism of action of Sfn and its role in the cell, we solved the crystal structure of a truncated form of Sfn at a resolution of 2.6 Å. This mutant form of Sfn lacks the C-terminal 21 amino acids (Sfn-∆C21) yet is as efficient as full length Sfn on model substrates. Interestingly, Sfn is not as active as E. coli Orn in in vitro assays. Analysis of the atomic structure revealed that the active site cleft in Sfn is narrower than the corresponding active site in E. coli. We propose a model for how this narrower cleft may explain the lower in vitro activity. Bacillus subtilis does not have an Orn homolog and until recently, the enzyme responsible for nano-RNA degradation in this organism was unknown. YtqI (also termed nrnA or nanoRNase), a protein unrelated to E. coli Orn, was recently shown to be responsible for the digestion of oligonucleotides in B. subtilis. In order to better understand the mechanism of action of YtqI, I solved its crystal structure at a resolution of 2.0 Å. The nuclease has a RecJ-like fold with two globular domains connected via a flexible linker that forms a central groove. On one side of the groove, the larger N-terminal domain harbors the putative active site, while on the opposite side, the C-terminal domain includes a putative RNA binding domain. The structure of YtqI provides insights into how this enzyme binds and digests oligoribonucleotides. The studies described here provide a better understanding of the mechanism of action for several exoribonucleases that act on nano-RNA oligonucleotides - Oligoribonuclease from E. coli, its close homolog in humans (Small fragment nuclease), as well as a functional homolog in Bacillus (YtqI). This work is relevant to understanding RNA metabolism, which is an essential process for survival of both eukaryotic and prokaryotic organisms.
15

Structure-function relationship study of a loop structure in allosteric behaviour and substrate inhibition of <i>Lactococcus lactis</i> prolidase

Chen, Jian An 25 February 2011
<p><i>Lactococcus lactis,</i> prolidase (<i>Lla</i>prol) hydrolyzes Xaa-Pro dipeptides. Since Xaa-Pro is known as bitter peptides, <i>Lla</i>prol is potentially applicable to reduce bitterness of fermented foods. <i>Lla</i>prol shows allosteric behaviour and substrate inhibition, which are not reported in other prolidases. Computer models of <i>Lla</i>prol based on an X-ray structure of non-allosteric <i>Pyrococcus furiosus</i> prolidase showed that a loop structure (Loop<sup>32-43</sup>) is located at the interface of the protomers of this homodimeric metallodipeptidase. This study investigated roles of four charged residues (Asp<sup>36</sup>, His<sup>38</sup>, Glu<sup>39</sup>, and Arg<sup>40</sup>) of Loop<sup>32-43</sup> in <i>Lla</i>prol using a combination of kinetic examinations of ten mutant enzymes and their molecular models. Deletion of the loop structure by Î36-40 mutant resulted in a loss of activity, indicating Loop<sup>32-43</sup> is crucial for the activity of <i>Lla</i>prol. D36S and H38S exhibited 96.2 % and 10.3 % activity of WT, whereas little activities (less than 1.0 % of WT activity) were observed for mutants E39S, D36S/E39S, R40S, R40E, R40K and H38S/R40S. These results implied that Glu<sup>39</sup> and/or Arg<sup>40</sup> play critical role(s) in maintaining the catalytic activity of <i>Lla</i>prol. These observations suggested that the loop structure is flexible and this attribute, relying on charge-charge interactions contributed by Arg<sup>40</sup>, Glu<sup>39</sup> and Lys<sup>108</sup>, is important in maintaining the activity of <i>Lla</i>prol. When the loop takes a conformation close to the active site (closed state), Asp<sup>36</sup> and His<sup>38</sup> at the tip of the loop can be involved in the catalytic reaction of <i>Lla</i>prol. The two active mutant prolidases (D36S and H38S) resulted in modifications of the unique characteristics; the allosteric behaviour was not observed for D36S, and H38S <i>Lla</i>prol showed no substrate inhibition. D36E/R293K, maintaining the negative charge of position 36 and positive charge of position 293, still possessed the allosteric behaviour, whereas the loss of the charges at these positions (D36S of this study and R293S of a previous study (Zhang et al., 2009 BBA-Proteins Proteom 1794, 968-975) eliminated the allosteric behaviour. These results indicated the charge-charge attraction between Asp<sup>36</sup> and Arg<sup>293</sup> is important for the allostery of <i>Lla</i>prol. In the presence of either zinc or manganese divalent cations as the metal catalytic centre, D36S and H38S enzymes also showed different substrate preferences from WT <i>Lla</i>prol, implying the influence of Asp<sup>36</sup> and His<sup>38</sup> on the substrate binding. D36S and H38S also showed higher activities at pH 5.0 to 6.0, in which range WT <i>Lla</i>prol steeply decreased its activity, indicating Asp<sup>36</sup> and His<sup>38</sup> are involved in the active centre and influence the microenvironment of catalytic His<sup>296</sup>. The above observations are attributed to modifications of their local structure in the active centre since the temperature dependency and thermal denaturing temperature indicated little effects on the overall structure of the <i>Lla</i>prol mutants.</p> <p>From these results, we concluded that the unique behaviours of <i>Lla</i>prol are correlated to Loop<sup>32-43</sup> and Asp<sup>36</sup> and His<sup>38</sup> on it. When Loop<sup>32-43</sup> takes a closed conformation, Asp<sup>36</sup> interacts with Arg<sup>293</sup> via charge-charge attraction to form an allosteric subsite. The saturation of the allosteric site with substrates further allowed the communications of His<sup>38</sup> with S<sub>1</sub> site residues to complete the active site. When the substrate concentration becomes higher than it is required to saturated productive S<sub>1</sub>' site, His<sup>38</sup>, Phe<sup>190</sup> and Arg<sup>293</sup> would resemble the residue arrangement of S<sub>1</sub>' site residues (His<sup>292</sup>, Tyr<sup>329</sup>, and Arg<sup>337</sup>) and bind to the proline residue of substrates. This non-productive binding would prevent the conformational change of Loop<sup>32-43</sup>, which further results in the substrate inhibition. For further confirmation of this mechanism, crystallographic studies will be conducted. In this thesis, we have indentified the conditions to produce crystals of <i>Lla</i>prol proteins.</p>
16

Characterization and Genetic Manipulation of D-cysteine Desulfhydrase from Solanum lycopersicum

Todorovic, Biljana January 2008 (has links)
Progress in DNA sequencing of plant genomes has revealed that, in addition to microorganisms, a number of plants contain genes which share similarity to microbial 1-aminocyclopropane-1-carboxylate (ACC) deaminases. ACC deaminases break down ACC, the immediate precursor of ethylene in plants, into ammonia and α-ketobutyrate. We therefore sought to isolate putative ACC deaminase cDNAs from tomato plants with the objective of establishing whether the product of this gene is a functional ACC deaminase. It was demonstrated that the enzyme encoded by the putative ACC deaminase cDNA does not have the ability to break the cyclopropane ring of ACC, but rather that it utilizes D-cysteine as a substrate, and in fact encodes a D-cysteine desulfhydrase. Kinetic characterization of the enzyme has shown that it is similar to other previously characterized D-cysteine desulfhydrases. Using site-directed mutagenesis, it was shown that altering two amino acid residues within the predicted active site changed the enzyme from D-cysteine desulfhydrase to ACC deaminase. Concomitantly, it was shown that by altering two amino acids residues at the same position within the active site of ACC deaminase from Pseudomonas putida UW4 changed this enzyme into D-cysteine desulfhydrase.
17

Structure-function relationship study of a loop structure in allosteric behaviour and substrate inhibition of <i>Lactococcus lactis</i> prolidase

Chen, Jian An 25 February 2011 (has links)
<p><i>Lactococcus lactis,</i> prolidase (<i>Lla</i>prol) hydrolyzes Xaa-Pro dipeptides. Since Xaa-Pro is known as bitter peptides, <i>Lla</i>prol is potentially applicable to reduce bitterness of fermented foods. <i>Lla</i>prol shows allosteric behaviour and substrate inhibition, which are not reported in other prolidases. Computer models of <i>Lla</i>prol based on an X-ray structure of non-allosteric <i>Pyrococcus furiosus</i> prolidase showed that a loop structure (Loop<sup>32-43</sup>) is located at the interface of the protomers of this homodimeric metallodipeptidase. This study investigated roles of four charged residues (Asp<sup>36</sup>, His<sup>38</sup>, Glu<sup>39</sup>, and Arg<sup>40</sup>) of Loop<sup>32-43</sup> in <i>Lla</i>prol using a combination of kinetic examinations of ten mutant enzymes and their molecular models. Deletion of the loop structure by Î36-40 mutant resulted in a loss of activity, indicating Loop<sup>32-43</sup> is crucial for the activity of <i>Lla</i>prol. D36S and H38S exhibited 96.2 % and 10.3 % activity of WT, whereas little activities (less than 1.0 % of WT activity) were observed for mutants E39S, D36S/E39S, R40S, R40E, R40K and H38S/R40S. These results implied that Glu<sup>39</sup> and/or Arg<sup>40</sup> play critical role(s) in maintaining the catalytic activity of <i>Lla</i>prol. These observations suggested that the loop structure is flexible and this attribute, relying on charge-charge interactions contributed by Arg<sup>40</sup>, Glu<sup>39</sup> and Lys<sup>108</sup>, is important in maintaining the activity of <i>Lla</i>prol. When the loop takes a conformation close to the active site (closed state), Asp<sup>36</sup> and His<sup>38</sup> at the tip of the loop can be involved in the catalytic reaction of <i>Lla</i>prol. The two active mutant prolidases (D36S and H38S) resulted in modifications of the unique characteristics; the allosteric behaviour was not observed for D36S, and H38S <i>Lla</i>prol showed no substrate inhibition. D36E/R293K, maintaining the negative charge of position 36 and positive charge of position 293, still possessed the allosteric behaviour, whereas the loss of the charges at these positions (D36S of this study and R293S of a previous study (Zhang et al., 2009 BBA-Proteins Proteom 1794, 968-975) eliminated the allosteric behaviour. These results indicated the charge-charge attraction between Asp<sup>36</sup> and Arg<sup>293</sup> is important for the allostery of <i>Lla</i>prol. In the presence of either zinc or manganese divalent cations as the metal catalytic centre, D36S and H38S enzymes also showed different substrate preferences from WT <i>Lla</i>prol, implying the influence of Asp<sup>36</sup> and His<sup>38</sup> on the substrate binding. D36S and H38S also showed higher activities at pH 5.0 to 6.0, in which range WT <i>Lla</i>prol steeply decreased its activity, indicating Asp<sup>36</sup> and His<sup>38</sup> are involved in the active centre and influence the microenvironment of catalytic His<sup>296</sup>. The above observations are attributed to modifications of their local structure in the active centre since the temperature dependency and thermal denaturing temperature indicated little effects on the overall structure of the <i>Lla</i>prol mutants.</p> <p>From these results, we concluded that the unique behaviours of <i>Lla</i>prol are correlated to Loop<sup>32-43</sup> and Asp<sup>36</sup> and His<sup>38</sup> on it. When Loop<sup>32-43</sup> takes a closed conformation, Asp<sup>36</sup> interacts with Arg<sup>293</sup> via charge-charge attraction to form an allosteric subsite. The saturation of the allosteric site with substrates further allowed the communications of His<sup>38</sup> with S<sub>1</sub> site residues to complete the active site. When the substrate concentration becomes higher than it is required to saturated productive S<sub>1</sub>' site, His<sup>38</sup>, Phe<sup>190</sup> and Arg<sup>293</sup> would resemble the residue arrangement of S<sub>1</sub>' site residues (His<sup>292</sup>, Tyr<sup>329</sup>, and Arg<sup>337</sup>) and bind to the proline residue of substrates. This non-productive binding would prevent the conformational change of Loop<sup>32-43</sup>, which further results in the substrate inhibition. For further confirmation of this mechanism, crystallographic studies will be conducted. In this thesis, we have indentified the conditions to produce crystals of <i>Lla</i>prol proteins.</p>
18

Characterization and Genetic Manipulation of D-cysteine Desulfhydrase from Solanum lycopersicum

Todorovic, Biljana January 2008 (has links)
Progress in DNA sequencing of plant genomes has revealed that, in addition to microorganisms, a number of plants contain genes which share similarity to microbial 1-aminocyclopropane-1-carboxylate (ACC) deaminases. ACC deaminases break down ACC, the immediate precursor of ethylene in plants, into ammonia and α-ketobutyrate. We therefore sought to isolate putative ACC deaminase cDNAs from tomato plants with the objective of establishing whether the product of this gene is a functional ACC deaminase. It was demonstrated that the enzyme encoded by the putative ACC deaminase cDNA does not have the ability to break the cyclopropane ring of ACC, but rather that it utilizes D-cysteine as a substrate, and in fact encodes a D-cysteine desulfhydrase. Kinetic characterization of the enzyme has shown that it is similar to other previously characterized D-cysteine desulfhydrases. Using site-directed mutagenesis, it was shown that altering two amino acid residues within the predicted active site changed the enzyme from D-cysteine desulfhydrase to ACC deaminase. Concomitantly, it was shown that by altering two amino acids residues at the same position within the active site of ACC deaminase from Pseudomonas putida UW4 changed this enzyme into D-cysteine desulfhydrase.
19

Ideonella dechloratans: Investigation of the chlorite dismutase promoter

Goetelen, Thijs January 2015 (has links)
Chlorate and perchlorate pollutions have become a problem in the environment in the last decades. Studies have shown that some bacteria can degrade these substances into unharmful substances such as chloride and molecular oxygen. One of these chlorate degrading bacteria is Ideonella dechloratans that uses chlorate reductase and chlorite dismutase to process chlorate. In the promoter gene sequence of chlorite dismutase there might be regulator sequences such as fumarate and nitrate reductase regulator (FNR) and aerobic respiration control protein (ArcA) that might control the transcription of this enzyme. This promoter sequence was placed in a pBBR1MCS-4-LacZ reporter vector and the possible regulatory sequences were changed through site-directed mutagenesis and tested on activity through beta-galactosidase assays. The changes in the FNR binding sequence gave beta-galactosidase activity that was close to a negative control which might give conclusions that either FNR has an important role or an important part of the promoter was hit. The changes in the ArcA regulator binding sequence did not give such big differences and no certainty can be given if this made important changes to the promoter.
20

Engineering and analysis of protease fine specificity via site-directed mutagenesis

Flowers, Crystal Ann 08 October 2013 (has links)
Altering the substrate specificity of proteases is a powerful process with possible applications in many areas of therapeutics as well as proteomics. Although the field is still developing, several proteases have been successfully engineered to recognize novel substrates. Previously in our laboratory, eight highly active OmpT variants were engineered with novel catalytic sites. The present study examined the roles of several residues surrounding the active site of OmpT while attempting to use rational design to modulate fine specificity enough to create a novel protease that prefers phosphotyrosine containing substrates relative to sulfotyrosine or unmodified tyrosine residues. In particular, a previously engineered sulfotyrosine-specific OmpT variant (Varadarajan et al., 2008) was the starting point for rationally designing fifteen new OmpT variants in an attempt to create a highly active protease that would selectively cleave phosphotyrosine substrates. Our design approach was to mimic the most selective phosphoryl-specific enzymes and binding proteins by increasing positive charge around the active site. Sulfonyl esters have a net overall charge of -1 near neutral pH, while phosphate monoesters have a net overall charge of -2. Selected active site residues were mutated by site-directed mutagenesis to lysine, arginine, and histidine. The catalytic activities and substrate specificities of each variant were characterized. Although several variants displayed altered substrate specificity, none preferred phosphotyrosine over sulfotyrosine containing peptides. Taken together, our results have underscored the subtle nature of protease substrate specificity and how elusive it can be to engineer fine specificity. Apparently, phosphotyrosine specific variants were not possible within the context of our starting sulfotyrosine specific OmpT derivative mutated to have single amino acid changes chosen on the basis of differential charge interactions. / text

Page generated in 0.089 seconds