• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 6
  • 2
  • 1
  • Tagged with
  • 15
  • 15
  • 11
  • 9
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Le système de recombinaison site-spécifique dif/Xer de Campylobacter jejuni

Rezoug, Zoulikha 12 1900 (has links)
Chez les bactéries à chromosome circulaire, la réplication peut engendrer des dimères que le système de recombinaison site-spécifique dif/Xer résout en monomères afin que la ségrégation des chromosomes fils et la division cellulaire se fassent normalement. Ses composants sont une ou deux tyrosines recombinases de type Xer qui agissent à un site de recombinaison spécifique, dif, avec l’aide de la translocase FtsK qui mobilise l’ADN au septum avant la recombinaison. Ce système a été d’abord identifié et largement caractérisé chez Escherichia coli mais il a également été caractérisé chez de nombreuses bactéries à Gram négatif et positif avec des variantes telles que les systèmes à une seule recombinase comme difSL/XerS chez Streptococcus sp et Lactococcus sp. Des études bio-informatiques ont suggéré l’existence d’autres systèmes à une seule recombinase chez un sous-groupe d’ε-protéobactéries pathogènes, dont Campylobacter jejuni et Helicobacter pylori. Les acteurs de ce nouveau système sont XerH et difH. Dans ce mémoire, les premières recherches in vitro sur ce système sont présentées. La caractérisation de la recombinase XerH de C. jejuni a été entamée à l’aide du séquençage de son gène et de tests de liaison et de clivage de l’ADN. Ces études ont montré que XerH pouvait se lier au site difSL de S. suis de manière non-coopérative : que XerH peut se lier à des demi-sites de difSL mais qu’elle ne pouvait, dans les conditions de l’étude effectuer de clivage sur difSL. Des recherches in silico ont aussi permis de faire des prédictions sur FtsK de C. jejuni. / DNA replication can form dimers in bacteria harboring a circular chromosome. The dif/Xer recombination system resolves monomers them so that chromosome segregation and cell division take place normally. This system is composed of one or two tyrosine recombinases that act at a specific recombination site, dif, with the help of the FtsK translocase that mobilises DNA to the septum before recombination. The Xer system has been first identified and widely characterized in Escherichia coli where XerC and XerD are the recombinases. The system has been found and studied in many other Gram negative and positive bacteria. A different form, carrying a single recombinase acting on an atypical site, has been identified in Streptococci and Lactococci, difSL/XerS. In silico studies suggested the existence of other single recombinase systems in a sub-group of pathogenic ε-proteobacteriasuch as Campylobacter jejuni and Helicobacter pylori. The components of this system were identified as XerH and difH. In this thesis, the first in vitro studies made on this system are presented. The characterization of the XerH recombinase of C. jejuni started with the sequencing of its gene and with the DNA binding and cleavage assays. These studies showed that XerH could bind difSL of S. suis non-cooperatively, that it could bind difSL half-sites and that it was unable to perform cleavage on difSL. Also, in silico comparisons permitted predictions on FtsK of C. jejuni.
2

Les systèmes Xer à une seule recombinase

Leroux, Maxime 11 1900 (has links)
Les dimères chromosomiques se produisant lors de la réparation de chromosomes circulaires peuvent être dommageables pour les bactéries en bloquant la ségrégation des chromosomes et le bon déroulement de la division cellulaire. Pour remédier à ce problème, les bactéries utilisent le système Xer de monomérisation des chromosomes. Celui-ci est composé de deux tyrosine recombinases, XerC et XerD, qui vont agir au niveau du site dif et procéder à une recombinaison qui aura pour effet de séparer les deux copies de l’ADN. Le site dif est une séquence d’ADN où deux répétitions inversées imparfaites séparées par six paires de bases permettent la liaison de chacune des recombinases. Cette recombinaison est régulée à l’aide de FtsK, une protéine essentielle de l’appareil de division. Ce système a été étudié en profondeur chez Escherichia coli et a aussi été caractérisée dans une multitude d’espèces variées, par exemple Bacillus subtilis. Mais dans certaines espèces du groupe des Streptococcus, des études ont été en mesure d’identifier une seule recombinase, XerS, agissant au niveau d’un site atypique nommée difSL. Peu de temps après, un second système utilisant une seule recombinase a été identifié chez un groupe des epsilon-protéobactéries. La recombinase fut nommée XerH et le site de recombinaison, plus similaire à difSL qu’au site dif classique, difH. Dans cette thèse, des résultats d’expériences in vitro sur les deux systèmes sont présentés, ainsi que certains résultats in vivo. Il est démontré que XerS est en mesure de se lier de façon coopérative à difSL et que cette liaison est asymétrique, puisque XerS est capable de se lier à la moitié gauche du site prise individuellement mais non à la moitié droite. Le clivage par XerS est aussi asymétrique, étant plus efficace au niveau du brin inférieur. Pour ce qui est de XerH, la liaison à difH est beaucoup moins coopérative et n’a pas la même asymétrie. Par contre, le clivage est asymétrique lui aussi. La comparaison de ces deux systèmes montrent qu’ils ne sont pas homologues et que les systèmes Xer à seule recombinase existent sous plusieurs versions. Ces résultats représentent la première découverte d’un espaceur de 11 paires de bases chez les tyrosine recombinases ainsi que la première étude in vitro sur XerH. / The chromosome dimers produced during the repair of circular chromosomes can be harmful to bacteria by blocking the segregation of the chromosome and cell division. To overcome this problem, bacteria use the Xer system for the monomerisation of chromosome dimers. It has two components, XerC and XerD, which act on the dif site and complete a recombination that will lead to the separation of the two copies of the DNA. The dif site is a DNA sequence where two imperfect inverted repeats separated by six base pairs allow the binding of each recombinase. This recombination is regulated by the protein FtsK, an essential member of the cell division machinery. The Xer system has been well studied in Escherichia coli and has also been characterized in a variety of species, for example Bacillus subtilis. Furthermore, in certain species of Streptococcus, studies have identified only a single recombinase, XerS, which acts on an atypical site named difSL in order to monomerize dimeric chromosomes. Not long after, a second system using a single recombinase was identified in a group of epsilon-proteobacteria. This recombinase was named XerH and the recombination site, difH, was found to more similar to difSL than to the classical dif sites. In this thesis, results from in vitro experiments on both systems are presented, as well as some results from in vivo experiments. We show that XerS is capable of binding cooperatively to difSL and that this binding is asymmetrical. This is because XerS is able to bind to the left half of the site but not to the right half when they are separated. The cleavage by XerS is also asymmetrical, as it is more efficient on the bottom strand. As for XerH, its binding to difH is much less cooperative and doesn’t have the same asymmetry. But the cleavage is also asymmetrical like the one seen in XerS. Comparing the two systems show that they are not homologuous and that more than one version of Xer systems using a single recombinase exists. These results represent the first discovery of an 11 bases pairs spacer for tyrosine recombinase. It is also the first in vitro studies of XerH.
3

Caractérisation biochimique, fonctionnelle et structurale de l'integrase Pf-Int de plasmodium / Biochemical, functional and structural characterization of the Plasmodium falciparum site specific recombinase Pf-Int

Ghorbal, Mehdi 28 February 2012 (has links)
Plasmodium falciparum est un parasite protozoaire responsable de la forme la plus sévère de la malaria. Depuis quelques années, les cas de résistance aux antipaludiques sont devenus de plus en plus fréquents et de plus en plus répandus. En plus de sa résistance aux drogues actuellement disponibles, ce parasite reste jusqu' à aujourd'hui réfractaire aux vaccinations. L’identification de nouvelles approches basées sur l`inhibition spécifique de certaines de ses cibles moléculaires vitales est devenue une nécessité. La recombinase à site spécifique de P. falciparum (Pf-Int) est un enzyme qui a été récemment identifié dans le laboratoire à partir de PlasmoDB. Cette recombinase à site spécifique joue potentiellement un rôle clé dans le système de recombinaison nécessaire à la viabilité du parasite. Cette protéine de 490 acides aminés, soit ~57 kDa, contient une région C-terminale qui porte les résidus conservés du site catalytique des recombinases à tyrosine R-H-K-R-(H/W)-Y. La prédiction montre une région N-terminale qui ressemble à celle de l’intégrase du phage lambda avec un mélange de structures secondaires α et β.Lors de ces travaux, nous avons d’abord montré par RT-PCR que le gène (MAL13P1.42) qui code pour PF-Int est transcrit pendant le cycle intra-érythrocytaire avec un maximum pendant la phase schizont. Nous avons ensuite essayé de montrer l`implication de Pf-Int dans le cycle parasitaire. Ceci a été réalisé grâce à un parasite (KO: knock-out) dont le gène Pf-Int a été invalidé. Ces analyses montrent que Pf-Int n'a aucun impact apparent sur le cycle de développement intra-érythrocytaire du parasite, en particulier sur la durée du cycle et le taux de croissance. Au niveau moléculaire, nous avons également procédé à la production d'anticorps anti-Pf-Int en utilisant le fragment C-162 (Résidus 162-490). La comparaison des profils de marquage, par cet anticorps, des extraits protéiques du KO et du parasite sauvage par la technique de Western blot n'a pas permis d'identifier la protéine endogène dans le parasite sauvage. Dans le but de déterminer la localisation sub-cellulaire de Pf-Int, nous avons réalisé des essais de sur-expression de différentes protéines de fusion dans le parasite. Nous avons essayé de déterminer l’impact de trois codons d’initiation différents ainsi que l’impact de la présence de la région N-terminale (1-190aa) de Pf-Int sur sa localisation subcellulaire en utilisant une chimère entre la partie N-terminale et la protéine GFP. Lors de ces travaux, nous avons réussi à sur-exprimer différentes régions de Pf-Int sous forme recombinante dans E. coli. Nous l’avons d’abord caractérisé par des études biophysiques. Ainsi nous avons pu déterminer, par dichroïsme circulaire (CD), le contenu en structures secondaires de Pf-Int, qui est proche de celui des autres membres de la même famille. Nous avons également démontré sa stabilité par CD couplé à la dénaturation thermique. Le spectre RMN-1D a aussi pu être enregistré. La troisième partie de nos travaux a concerné l’identification des cibles ADN de Pf-Int. Deux stratégies de recherche de cibles par affinité ont été utilisées au laboratoire en utilisant une première bibliothèque de séquences synthétisées chimiquement et une deuxième bibliothèque formée de fragments d’ADN génomique de P. falciparum. Ces deux approches ont permis l’identification de deux séries de cibles ADN. Grace aux cibles ADN identifiées, nous avons pu démontrer l’interaction de différents fragments de Pf-Int avec ces cibles par des expériences de retard sur gel natif (EMSA). Nous avons aussi pu démontrer que les protéines recombinantes sont actives in vitro. En effet, ces dernières sont capables de former des complexes covalents en présence de l’ADN cible. La conservation de la protéine, ainsi que son expression différentielle nous laisse à penser que son rôle est certes loin d’être élucidé, mais que Pf-Int reste une cible potentielle pour P. falciparum. / Plasmodium falciparum is a protozoan parasite responsible for the most severe form of malaria. In recent years, cases of resistance to antimalarial drugs have become increasingly frequent and common. In addition to its resistance to drugs currently available, there is no vaccine available against this parasite till now. The identification of new approaches based on the specific inhibition of some of its molecular targets has become vital.The identification of the Pf-Int site specific recombinase in Plasmodium falciparum by analysis of PlasmoDB is a new opportunity to study the role of genetic variation in this parasite as it needs to adapt to its hosts. This ~ 57 kDa protein contains a C-terminal domain carrying the putative tyrosine recombinase conserved active site residues R-H-K-R-(H/W)-Y, an N-terminus with a predicted alpha-helical bundle and a mixed alpha-beta domain resembling Lambda-Int. Here, we show that the sequence is highly conserved among members of the Plasmodia. It is expressed differentially during distinct life stages as estimated by RT-PCR, namely with a peak in the schizont phase. We then tried to show the involvement of Pf-Int in the parasitic cycle. We were able to create a parasite where the Pf-Int gene was knocked-out. The comparison test showed that Pf-Int has apparently no impact on the intraerythrocytic developmental cycle of the parasite, particularly in the cycle length and the growth rate.At the molecular level, we produced two sets of anti-Pf-Int antibodies using the purified recombinant fragment C-162 (residues 162-490). Comparison of protein extracts from KO and wild parasite by Western blot technique using our antibody has failed to identify the endogenous protein in the wild type parasite.We also tried to determine the subcellular localization of Pf-Int and the role of possible alternate initiation codons by over-expressing different constructs in the parasite Plasmodium falciparum. In order to determine the impact of the N-terminal region (1-190aa) of Pf-Int on its subcellular localization, we also created a chimeric protein using a fusion of Pf-Int(1-190aa) with the GFP. We successfully expressed a variety of the recombinant form of Pf-Int in E. coli. We have first determined its secondary structure content by circular dichroism (CD) and its solution stability by thermal denaturation-CD. An 1-D NMR spectrum was also recorded. The third part of our work has involved the identification of the DNA targets of Pf-Int. Two search strategies conducted in the laboratory using a library of chemically synthesized sequences and a second library made of fragments of genomic DNA of P. falciparum. Both approaches have allowed the identification of two sets of target DNA. Secondly, electrophoretic mobility shift assays (EMSA) were used to show its affinity and specificity for DNA. The recombinant proteins were shown to be functional as they form a covalent complex with DNA. Thus Pf-Int could be a potential agent that binds to and alters DNA, either in a specific or in random fashion. Its conservation and differential expression leads us to conclude that although its role is far from being understood, Pf-Int remains a key target for P. falciparum.
4

New bacterial transglutaminase Q-tag substrate for the development of site-specific Antibody Drug Conjugates / Nouveaux subtrats Q-tag pour le développement d’ADCs site spécifique par activité enzymatique transglutaminase

Sivado, Eva 04 December 2018 (has links)
Es ADCs (Antibody-Drug Conjugates) correspondent à une nouvelle stratégie thérapeutique anti-tumorale particulièrement prometteuse. Néanmoins, les ADCs actuellement utilisés en clinique sont obtenus par conjugaisons chimiques, resultant en des mixtures hétérogènes impactant négativement leurs pharmacocinétiques et leurs performances in vivo.Récemment, différentes strategies de couplage site-spécifique ont été développées afin de réduire cette hétérogénéité. Dans cette thèse, nous rapportons le développement d’une nouvelle technologie CovIsoLink™ (Covalently Isopeptide Crosslinking) permettant la génération d’ADCs par utilisation de nouveaux peptides glutamine Q-Tag présentant des affinités optimisées par rapport à des peptides disponibles (ZQG, LLQG) pour une enzyme bactérienne la transglutaminase (mTG).La preuve de concept de cette technologie a été réalisée par insertion de ces peptides Q-Tag en C-ter de la région codant pour la chaine lourde des anticorps anti-HER2 (Trastuzumab). Nous avons ainsi pu démontrer la conjugaison homogène et reproductible de différentes drogues sans contamination par des chaines d’anticorps non conjuguées. Nous avons pu montrer que l’immunoréactivité et la capacité d’internalisation de ces ADCs n’étaient pas altérées par la conjugaison et qu’ils présentaient in vitro et in vivo, des propriétés de lyse de cellules tumorales similaires au Trastuzumab emtansine (Kadcyla®), actuellement en clinique. Par ailleurs, afin de généraliser notre technologie à différents formats d’anticorps nous avons générés des fragments Fab et scFv et évalué leur fonctionnalité. Ainsi, nous avons pu prouver que l’utilisation de nouveaux peptides optimisés Q-Tag substrat de la transglutaminase permettait une stratégie de couplage alternative plus homogène par couplage de différentes molécules sans espèce contaminante non couplée / Antibody-drug conjugates (ADCs) are a powerful class of therapeutic agents, demonstrating success in the treatment of several malignancies. The currently approved ADCs are produced by chemical conjugations and exist as heterogeneous mixtures that negatively influence the pharmacokinetics and in vivo performance. Recently many of site-specific conjugation technologies have been developed to reduce heterogeneity and batch-to batch variability. Microbial transglutaminase (mTG) has been demonstrated as efficient tool for site-specific conjugation. In this thesis we report the development CovIsoLink™ (Covalently Isopeptide Crosslinking) technology for the generation of homogenous immunoconjugates using a novel glutamine donor peptides (Q-tag) with improved affinity compared to the known peptides (ZQG, LLQG). As a proof of concept, the peptides sequences were engineered into the heavy chain C-terminal of Trastuzumab antibody. We demonstrated the reproducible and homogeneous conjugation of Q-tagged Trastuzumab with different payloads, without any unconjugated species. The ADCs were evaluated in series of in vitro and in vivo assays. We confirmed that the immunoreactivity and internalisation are not altered by the conjugation. Furthermore similar in vitro and in vivo tumor cell killing potency was demonstrated than Trastuzumab emtansine (Kadcyla®), which is already used in the clinic. Morover we extend our site-specific conjugation technology to antibody fragments (Fab and scFv), evaluating their functionality by conjugation with AlexaFluor488-cadaverine and in antigen binding assays. Thus, using novel glutamine donor peptides, our technology provides an alternative enzymatic conjugation strategy for the engrafment of different payloads resulting in homogeneous batches, without unconjugated species
5

Le système de recombinaison site-spécifique dif/Xer de Campylobacter jejuni

Rezoug, Zoulikha 12 1900 (has links)
Chez les bactéries à chromosome circulaire, la réplication peut engendrer des dimères que le système de recombinaison site-spécifique dif/Xer résout en monomères afin que la ségrégation des chromosomes fils et la division cellulaire se fassent normalement. Ses composants sont une ou deux tyrosines recombinases de type Xer qui agissent à un site de recombinaison spécifique, dif, avec l’aide de la translocase FtsK qui mobilise l’ADN au septum avant la recombinaison. Ce système a été d’abord identifié et largement caractérisé chez Escherichia coli mais il a également été caractérisé chez de nombreuses bactéries à Gram négatif et positif avec des variantes telles que les systèmes à une seule recombinase comme difSL/XerS chez Streptococcus sp et Lactococcus sp. Des études bio-informatiques ont suggéré l’existence d’autres systèmes à une seule recombinase chez un sous-groupe d’ε-protéobactéries pathogènes, dont Campylobacter jejuni et Helicobacter pylori. Les acteurs de ce nouveau système sont XerH et difH. Dans ce mémoire, les premières recherches in vitro sur ce système sont présentées. La caractérisation de la recombinase XerH de C. jejuni a été entamée à l’aide du séquençage de son gène et de tests de liaison et de clivage de l’ADN. Ces études ont montré que XerH pouvait se lier au site difSL de S. suis de manière non-coopérative : que XerH peut se lier à des demi-sites de difSL mais qu’elle ne pouvait, dans les conditions de l’étude effectuer de clivage sur difSL. Des recherches in silico ont aussi permis de faire des prédictions sur FtsK de C. jejuni. / DNA replication can form dimers in bacteria harboring a circular chromosome. The dif/Xer recombination system resolves monomers them so that chromosome segregation and cell division take place normally. This system is composed of one or two tyrosine recombinases that act at a specific recombination site, dif, with the help of the FtsK translocase that mobilises DNA to the septum before recombination. The Xer system has been first identified and widely characterized in Escherichia coli where XerC and XerD are the recombinases. The system has been found and studied in many other Gram negative and positive bacteria. A different form, carrying a single recombinase acting on an atypical site, has been identified in Streptococci and Lactococci, difSL/XerS. In silico studies suggested the existence of other single recombinase systems in a sub-group of pathogenic ε-proteobacteriasuch as Campylobacter jejuni and Helicobacter pylori. The components of this system were identified as XerH and difH. In this thesis, the first in vitro studies made on this system are presented. The characterization of the XerH recombinase of C. jejuni started with the sequencing of its gene and with the DNA binding and cleavage assays. These studies showed that XerH could bind difSL of S. suis non-cooperatively, that it could bind difSL half-sites and that it was unable to perform cleavage on difSL. Also, in silico comparisons permitted predictions on FtsK of C. jejuni.
6

Caractérisation biochimique, fonctionnelle et structurale de l'integrase Pf-Int de plasmodium.

Ghorbal, Mehdi 28 February 2012 (has links) (PDF)
Plasmodium falciparum est un parasite protozoaire responsable de la forme la plus sévère de la malaria. Depuis quelques années, les cas de résistance aux antipaludiques sont devenus de plus en plus fréquents et de plus en plus répandus. En plus de sa résistance aux drogues actuellement disponibles, ce parasite reste jusqu' à aujourd'hui réfractaire aux vaccinations. L'identification de nouvelles approches basées sur l'inhibition spécifique de certaines de ses cibles moléculaires vitales est devenue une nécessité. La recombinase à site spécifique de P. falciparum (Pf-Int) est un enzyme qui a été récemment identifié dans le laboratoire à partir de PlasmoDB. Cette recombinase à site spécifique joue potentiellement un rôle clé dans le système de recombinaison nécessaire à la viabilité du parasite. Cette protéine de 490 acides aminés, soit ~57 kDa, contient une région C-terminale qui porte les résidus conservés du site catalytique des recombinases à tyrosine R-H-K-R-(H/W)-Y. La prédiction montre une région N-terminale qui ressemble à celle de l'intégrase du phage lambda avec un mélange de structures secondaires α et β.Lors de ces travaux, nous avons d'abord montré par RT-PCR que le gène (MAL13P1.42) qui code pour PF-Int est transcrit pendant le cycle intra-érythrocytaire avec un maximum pendant la phase schizont. Nous avons ensuite essayé de montrer l'implication de Pf-Int dans le cycle parasitaire. Ceci a été réalisé grâce à un parasite (KO: knock-out) dont le gène Pf-Int a été invalidé. Ces analyses montrent que Pf-Int n'a aucun impact apparent sur le cycle de développement intra-érythrocytaire du parasite, en particulier sur la durée du cycle et le taux de croissance. Au niveau moléculaire, nous avons également procédé à la production d'anticorps anti-Pf-Int en utilisant le fragment C-162 (Résidus 162-490). La comparaison des profils de marquage, par cet anticorps, des extraits protéiques du KO et du parasite sauvage par la technique de Western blot n'a pas permis d'identifier la protéine endogène dans le parasite sauvage. Dans le but de déterminer la localisation sub-cellulaire de Pf-Int, nous avons réalisé des essais de sur-expression de différentes protéines de fusion dans le parasite. Nous avons essayé de déterminer l'impact de trois codons d'initiation différents ainsi que l'impact de la présence de la région N-terminale (1-190aa) de Pf-Int sur sa localisation subcellulaire en utilisant une chimère entre la partie N-terminale et la protéine GFP. Lors de ces travaux, nous avons réussi à sur-exprimer différentes régions de Pf-Int sous forme recombinante dans E. coli. Nous l'avons d'abord caractérisé par des études biophysiques. Ainsi nous avons pu déterminer, par dichroïsme circulaire (CD), le contenu en structures secondaires de Pf-Int, qui est proche de celui des autres membres de la même famille. Nous avons également démontré sa stabilité par CD couplé à la dénaturation thermique. Le spectre RMN-1D a aussi pu être enregistré. La troisième partie de nos travaux a concerné l'identification des cibles ADN de Pf-Int. Deux stratégies de recherche de cibles par affinité ont été utilisées au laboratoire en utilisant une première bibliothèque de séquences synthétisées chimiquement et une deuxième bibliothèque formée de fragments d'ADN génomique de P. falciparum. Ces deux approches ont permis l'identification de deux séries de cibles ADN. Grace aux cibles ADN identifiées, nous avons pu démontrer l'interaction de différents fragments de Pf-Int avec ces cibles par des expériences de retard sur gel natif (EMSA). Nous avons aussi pu démontrer que les protéines recombinantes sont actives in vitro. En effet, ces dernières sont capables de former des complexes covalents en présence de l'ADN cible. La conservation de la protéine, ainsi que son expression différentielle nous laisse à penser que son rôle est certes loin d'être élucidé, mais que Pf-Int reste une cible potentielle pour P. falciparum.
7

Les systèmes Xer à une seule recombinase

Leroux, Maxime 11 1900 (has links)
Les dimères chromosomiques se produisant lors de la réparation de chromosomes circulaires peuvent être dommageables pour les bactéries en bloquant la ségrégation des chromosomes et le bon déroulement de la division cellulaire. Pour remédier à ce problème, les bactéries utilisent le système Xer de monomérisation des chromosomes. Celui-ci est composé de deux tyrosine recombinases, XerC et XerD, qui vont agir au niveau du site dif et procéder à une recombinaison qui aura pour effet de séparer les deux copies de l’ADN. Le site dif est une séquence d’ADN où deux répétitions inversées imparfaites séparées par six paires de bases permettent la liaison de chacune des recombinases. Cette recombinaison est régulée à l’aide de FtsK, une protéine essentielle de l’appareil de division. Ce système a été étudié en profondeur chez Escherichia coli et a aussi été caractérisée dans une multitude d’espèces variées, par exemple Bacillus subtilis. Mais dans certaines espèces du groupe des Streptococcus, des études ont été en mesure d’identifier une seule recombinase, XerS, agissant au niveau d’un site atypique nommée difSL. Peu de temps après, un second système utilisant une seule recombinase a été identifié chez un groupe des epsilon-protéobactéries. La recombinase fut nommée XerH et le site de recombinaison, plus similaire à difSL qu’au site dif classique, difH. Dans cette thèse, des résultats d’expériences in vitro sur les deux systèmes sont présentés, ainsi que certains résultats in vivo. Il est démontré que XerS est en mesure de se lier de façon coopérative à difSL et que cette liaison est asymétrique, puisque XerS est capable de se lier à la moitié gauche du site prise individuellement mais non à la moitié droite. Le clivage par XerS est aussi asymétrique, étant plus efficace au niveau du brin inférieur. Pour ce qui est de XerH, la liaison à difH est beaucoup moins coopérative et n’a pas la même asymétrie. Par contre, le clivage est asymétrique lui aussi. La comparaison de ces deux systèmes montrent qu’ils ne sont pas homologues et que les systèmes Xer à seule recombinase existent sous plusieurs versions. Ces résultats représentent la première découverte d’un espaceur de 11 paires de bases chez les tyrosine recombinases ainsi que la première étude in vitro sur XerH. / The chromosome dimers produced during the repair of circular chromosomes can be harmful to bacteria by blocking the segregation of the chromosome and cell division. To overcome this problem, bacteria use the Xer system for the monomerisation of chromosome dimers. It has two components, XerC and XerD, which act on the dif site and complete a recombination that will lead to the separation of the two copies of the DNA. The dif site is a DNA sequence where two imperfect inverted repeats separated by six base pairs allow the binding of each recombinase. This recombination is regulated by the protein FtsK, an essential member of the cell division machinery. The Xer system has been well studied in Escherichia coli and has also been characterized in a variety of species, for example Bacillus subtilis. Furthermore, in certain species of Streptococcus, studies have identified only a single recombinase, XerS, which acts on an atypical site named difSL in order to monomerize dimeric chromosomes. Not long after, a second system using a single recombinase was identified in a group of epsilon-proteobacteria. This recombinase was named XerH and the recombination site, difH, was found to more similar to difSL than to the classical dif sites. In this thesis, results from in vitro experiments on both systems are presented, as well as some results from in vivo experiments. We show that XerS is capable of binding cooperatively to difSL and that this binding is asymmetrical. This is because XerS is able to bind to the left half of the site but not to the right half when they are separated. The cleavage by XerS is also asymmetrical, as it is more efficient on the bottom strand. As for XerH, its binding to difH is much less cooperative and doesn’t have the same asymmetry. But the cleavage is also asymmetrical like the one seen in XerS. Comparing the two systems show that they are not homologuous and that more than one version of Xer systems using a single recombinase exists. These results represent the first discovery of an 11 bases pairs spacer for tyrosine recombinase. It is also the first in vitro studies of XerH.
8

La cohésion des chromatides sœurs chez Escherichia coli / Sister chromatid cohesion in Escherichia coli

Gigant, Emmanuelle 30 November 2012 (has links)
Chez les bactéries, la ségrégation du chromosome est initiée durant la phase de réplication. Des expériences de time lapse, utilisées pour observer que la dynamique des loci frères durant le cycle cellulaire, montrent que, chez Escherichia coli, les régions sœurs restent colocalisées pour une période significative dans les régions des macrodomaines du chromosome et pour une courte période dans les régions non-structurées. Nous nous sommes posés la question suivante: est ce que l’étape de colocalisation révèle une réelle cohésion entre les chromatides sœurs ? Pour y répondre, nous avons développé un outil génétique, alternatif aux outils de biologie cellulaire, permettant de mesurer la distance entre les chromatides sœurs de manière directe. La fréquence de recombinaison intermoléculaire médiée par la recombinase Cre entre les sites loxP positionnés sur les chromatides sœurs est mesurée pour différentes positions. De cette fréquence, nous avons pu déduire la proximité entre les chromatides sœurs. Nous révélons que les loci frères restent proche l’un de l’autre pour une courte période après la réplication. Nous appelons cette étape la cohésion moléculaire, celle-ci est dépendante du locus considéré. Nous montrons que les facteurs qui favorisent la colocalisation des foci frères n’augmentent pas nécessairement l’habilité des loci frères à recombiner. En effet, la protéine MatP, un acteur de la colocalisation des macrodomaines Ter, n’affecte pas la cohésion entre les deux copies de cette région. La Topoisomérase IV est un facteur essentiel à la ségrégation des chromosomes. En son absence, les chromosomes ne peuvent se ségréger et restent colocalisés dans la cellule. Nous révélons par le test de recombinaison que l’absence de Topoisométase IV dans les cellules provoque une augmentation des interactions entre chromatides sœurs. Au final, nous avons montré que l’étape de cohésion est différente de la colocalisation, que les mécanismes moléculaires diffèrent d’une étape à l’autre et que les liens de précaténation moduleraient la cohésion post-réplicative entre chromatides sœurs. / In bacteria, the segregation of the chromosome is initiated during the replication phase. Time lapse experiments, used to watch the dynamic of loci during cell cycle, showed, in Escherichia coli, that the sister loci remain colocalized for a significant amount of time in the macrodomain regions of the chromosome and for shorter period in the Non Structured regions. We asked the following question: does this colocalization step reveal a real cohesion between the sister chromatids? To answer, we have developed a genetic tool, alternative to cell biology tools, to measure the distance between sister chromatids directly. The frequency of intermolecular recombination mediated by Cre recombinase loxP sites located on sister chromatids was measured for various loci. From this frequency we were able to deduce the proximity of sister chromatids. We revealed that sister loci remained in close proximity for a short period following replication. We called this step molecular cohesion, it is dependent on the considered locus. We showed that factors that promote colocalisation of sister foci do not necessarily increase the ability of sister loci to recombine. Indeed, the MatP protein, an actor of macrodomain Ter colocalisation, does not affect the cohesion between the two copies of this region. The TopoIV is essential for the segregation of chromosomes. In its absence, the chromosomes can not segregate and remain colocalized in the cell. We reveal by recombinaison assy that the absence of Topoisomerase IV revealed an increase of interactions between sister chromatids. To conclude, we have shown that the cohesion step is different from the colocalisation step, the molecular mechanisms differ from one stage to another and précaténation links take part in the post-replicative cohesion between sister chromatids
9

Synthèse et évaluation pharmacologique d'anticorps couplés avec une nouvelle méthode de conjugaison site spécifique et stoechiométrique via l'enzyme transglutaminase bactérienne / Synthesis and pharmacological evaluation of antibody drug conjugates with a new site specific method and stoechiometric conjugation based on bacterial transglutaminase enzyme

Lhospice, Florence 28 November 2018 (has links)
La majorité des ADC qui sont actuellement en clinique et en développement sont produits par une conjugaison chimique via les résidus lysine ou cystéine, menant à un produit hétérogène pour leur ratio toxine sur anticorps (DAR). L'objet des travaux de thèse a pour but de décrire la caractérisation in vitro et in vivo de nouveaux ADC optimisés et construits à partir de l'anticorps anti-CD30 cAC10, ayant le même squelette polypetidique que Adcetris, et de comparer les résultats à ce dernier. La transglutaminase bactérienne (BTG) a été utilisée pour conjuguer de manière site-spécifique la MMAE aux glutamines aux positions 295 et 297 du cAC10, amenant à des ADCs homogènes de DAR 4, TG-ADC. Des travaux préliminaires ont permis d’établir les conditions optimales de conjugaison avec un procédé en deux étapes. Les tests de cytotoxicité ont révélé des EC50 comparables entre Adcetris et les TG-ADC. Les données d’efficacité in vivo montrent une efficacité équivalente voire légèrement supérieure pour les TG-ADC que Adcetris. L'étude de biodistribution in vivo dans un modèle avec et sans tumeur est réalisé avec un 125-I TG-ADC et est comparé à 125I-Adcetris. Le TG ADC site spécifique montre une meilleure distribution tumorale. Adcetris a une distribution non médiée par la cible, dans le foie et la rate, plus importante. En ligne avec ces résultats, la dose maximale tolérée des TG ADC est significativement plus élevée que Adcetris chez le rat. Ces résultats suggèrent que les ADC homogènes ont une meilleure pharmacocinétique et un meilleur index thérapeutique comparés aux ADC avec des DAR hétérogènes. / Most ADC that are currently in clinical use or development produced by chemical conjugation of a toxin via either lysine or cysteine residues, inevitably leading to heterogeneous products with variable drug-to-antibody ratios (DARs). Here, we describe the in vitro and in vivo characterization of novel ADCs that are based on the anti-CD30 antibody cAC10, which has the same polypeptide backbone as Adcetris, and compare the results with the latter. Bacterial transglutaminase (BTG) was exploited to site-specifically conjugate derivatives of MMAE to the glutamines at position 295 and 297 of cAC10, yielding homogeneous ADCs with a DAR of 4, TG-ADC. Preliminary works have led to define optimal conditions for conjugation, but also define a two step process. In vitro cell toxicity experiments revealed comparable EC50-values for Adcetris and TG-ADC. The efficacy data have shown slightly better efficacy for TG-ADC compared to Adcetris. Quantitative time-dependent in vivo biodistribution studies in normal and xenografted mice were performed with a selected 125I TG ADC and compared with 125I-Adcetris. Adcetris has an higher liver and spleen unspecific uptakes. In line with these results, the maximum tolerated dose of the BTG-coupled ADC (> 60 mg/kg) was significantly higher than that of ADCETRIS® (18 mg/kg) in rats. These results suggest that homogenous ADCs display improved pharmacokinetics and better therapeutic indexes compared to chemically modified ADCs with variable DARs.
10

La cohésion des chromatides sœurs chez Escherichia coli

Gigant, Emmanuelle 30 November 2012 (has links) (PDF)
Chez les bactéries, la ségrégation du chromosome est initiée durant la phase de réplication. Des expériences de time lapse, utilisées pour observer que la dynamique des loci frères durant le cycle cellulaire, montrent que, chez Escherichia coli, les régions sœurs restent colocalisées pour une période significative dans les régions des macrodomaines du chromosome et pour une courte période dans les régions non-structurées. Nous nous sommes posés la question suivante: est ce que l'étape de colocalisation révèle une réelle cohésion entre les chromatides sœurs ? Pour y répondre, nous avons développé un outil génétique, alternatif aux outils de biologie cellulaire, permettant de mesurer la distance entre les chromatides sœurs de manière directe. La fréquence de recombinaison intermoléculaire médiée par la recombinase Cre entre les sites loxP positionnés sur les chromatides sœurs est mesurée pour différentes positions. De cette fréquence, nous avons pu déduire la proximité entre les chromatides sœurs. Nous révélons que les loci frères restent proche l'un de l'autre pour une courte période après la réplication. Nous appelons cette étape la cohésion moléculaire, celle-ci est dépendante du locus considéré. Nous montrons que les facteurs qui favorisent la colocalisation des foci frères n'augmentent pas nécessairement l'habilité des loci frères à recombiner. En effet, la protéine MatP, un acteur de la colocalisation des macrodomaines Ter, n'affecte pas la cohésion entre les deux copies de cette région. La Topoisomérase IV est un facteur essentiel à la ségrégation des chromosomes. En son absence, les chromosomes ne peuvent se ségréger et restent colocalisés dans la cellule. Nous révélons par le test de recombinaison que l'absence de Topoisométase IV dans les cellules provoque une augmentation des interactions entre chromatides sœurs. Au final, nous avons montré que l'étape de cohésion est différente de la colocalisation, que les mécanismes moléculaires diffèrent d'une étape à l'autre et que les liens de précaténation moduleraient la cohésion post-réplicative entre chromatides sœurs.

Page generated in 0.099 seconds