• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Repair of skeletal muscle transection injury with tissue loss

Merritt, Edward Kelly, 1979- 19 October 2009 (has links)
A traumatic skeletal muscle injury that involves the loss of a substantial portion of tissue will not regenerate on its own. Little is understood about the ability of the muscle to recover function after such a defect injury, and few research models exist to further elucidate the repair and regeneration processes of defected skeletal muscle. In the current research, a model of muscle injury was developed in the lateral gastrocnemius (LGAS) of the rat. In this model, the muscle gradually remodels but functional recovery does not occur over 42 days. Repair of the defect with muscle-derived extracellular matrix (ECM), improves the morphology of the LGAS. Blood vessels and myofibers grow into the ECM implant in vivo, but functional recovery does not occur. Addition of bone marrow-derived mesenchymal stem cells (MSCs) to the implanted ECM in the LGAS increases the number of blood vessels and regenerating myofibers within the ECM. Following 42 days of recovery, the cell-seeded ECM implanted LGAS produces significantly higher isometric force than the non-repaired and non-cell seeded ECM muscles. These results suggest that the LGAS muscle defect is a suitable model for the study of traumatic skeletal muscle injury with tissue loss. Additionally, MSCs seeded on an implanted ECM lead to functional restoration of the defected LGAS. / text

Page generated in 0.1191 seconds