• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DEEP SKETCH-BASED CHARACTER MODELING USING MULTIPLE CONVOLUTIONAL NEURAL NETWORKS

Aleena Kyenat Malik Aslam (14216159) 07 December 2022 (has links)
<p>3D character modeling is a crucial process of asset creation in the entertainment industry, particularly for animation and games. A fully automated pipeline via sketch-based 3D modeling (SBM) is an emerging possibility, but development is stalled by unrefined outputs and a lack of character-centered tools. This thesis proposes an improved method for constructing 3D character models with minimal user input, using only two sketch inputs  i.e., a front and side unshaded sketch. The system implements a deep convolutional neural network (CNN), a type of deep learning algorithm extending from artificial intelligence (AI), to process the input sketch and generate multi-view depth, normal and confidence maps that offer more information about the 3D surface. These are then fused into a 3D point cloud, which is a type of object representation for 3D space. This point cloud is converted into a 3D mesh via an occupancy network, involving another CNN, for a more precise 3D representation. This reconstruction step contends with non-deep learning approaches such as  Poisson reconstruction. The proposed system is evaluated for character generation on standardized quantitative metrics (i.e., Chamfer Distance [CD], Earth Mover’s Distance [EMD], F-score and Intersection of Union [IoU]), and compared to the base framework trained on the same character sketch and model database. This implementation offers a  significant improvement in the accuracy of vertex positions for the reconstructed character models. </p>

Page generated in 0.1192 seconds