Spelling suggestions: "subject:"skew bnormal codistribution"" "subject:"skew bnormal bydistribution""
1 |
Some contributions to the analysis of skew data on the line and circlePewsey, Arthur Richard January 2002 (has links)
No description available.
|
2 |
Bayesian inference on mixture models and their applicationsChang, Ilsung 16 August 2006 (has links)
Mixture models are useful in describing a wide variety of random phenomena because
of their flexibility in modeling. They have continued to receive increasing attention
over the years from both a practical and theoretical point of view. In their applications,
estimating the number of mixture components is often the main research
objective or the first step toward it. Estimation of the number of mixture components
heavily depends on the underlying distribution. As an extension of normal
mixture models, we introduce a skew-normal mixture model and adapt the reversible
jump Markov chain Monte Carlo algorithm to estimate the number of components
with some applications to biological data.
The reversible jump algorithm is also applied to the Cox proportional hazard
model with frailty. We consider a regression model for the variance components in
the proportional hazards frailty model. We propose a Bayesian model averaging procedure
with a reversible jump Markov chain Monte Carlo step which selects the model
automatically. The resulting regression coefficient estimates ignore the model uncertainty
from the frailty distribution. Finally, the proposed model and the estimation
procedure are illustrated with simulated example and real data.
|
3 |
The Inverse Problem of Multivariate and Matrix-Variate Skew Normal DistributionsZheng, Shimin, Hardin, J. M., Gupta, A. K. 01 June 2012 (has links)
In this paper, we prove that the joint distribution of random vectors Z 1 and Z 2 and the distribution of Z 2 are skew normal provided that Z 1 is skew normally distributed and Z 2 conditioning on Z 1 is distributed as closed skew normal. Also, we extend the main results to the matrix variate case.
|
4 |
Sequential Inference and Nonparametric Goodness-of-Fit Tests for Certain Types of Skewed DistributionsOpperman, Logan J. 07 August 2019 (has links)
No description available.
|
5 |
Sequential Change-point Analysis for Skew Normal Distributions andNonparametric CUSUM and Shiryaev-Roberts Procedures Based onModified Empirical LikelihoodWang, Peiyao 23 August 2022 (has links)
No description available.
|
6 |
Stochastic Representations of the Matrix Variate Skew Elliptically Contoured DistributionsZheng, Shimin, Zhang, Chunming, Knisley, Jeff 01 January 2013 (has links)
Matrix variate skew elliptically contoured distributions generalize several classes of important distributions. This paper defines and explores matrix variate skew elliptically contoured distributions. In particular, we discuss two stochastic representations of the matrix variate skew elliptically contoured distributions.
|
7 |
Antedependence Models for Skewed Continuous Longitudinal DataChang, Shu-Ching 01 July 2013 (has links)
This thesis explores the problems of fitting antedependence (AD) models and partial antecorrelation (PAC) models to continuous non-Gaussian longitudinal data. AD models impose certain conditional independence relations among the measurements within each subject, while PAC models characterize the partial correlation relations. The models are parsimonious and useful for data exhibiting time-dependent correlations.
Since the relation of conditional independence among variables is rather restrictive, we first consider an autoregressively characterized PAC model with independent asymmetric Laplace (ALD) innovations and prove that this model is an AD model. The ALD distribution previously has been applied to quantile regression and has shown promise for modeling asymmetrically distributed ecological data. In addition, the double exponential distribution, a special case of the ALD, has played an important role in fitting symmetric finance and hydrology data. We give the distribution of a linear combination of independent standard ALD variables in order to derive marginal distributions for the model. For the model estimation problem, we propose an iterative algorithm for the maximum likelihood estimation. The estimation accuracy is illustrated by some numerical examples as well as some longitudinal data sets.
The second component of this dissertation focuses on AD multivariate skew normal models. The multivariate skew normal distribution not only shares some nice properties with multivariate normal distributions but also allows for any value of skewness. We derive necessary and sufficient conditions on the shape and covariance parameters for multivariate skew normal variables to be AD(p) for some p. Likelihood-based estimation for balanced and monotone missing data as well as likelihood ratio hypothesis tests for the order of antedependence and for zero skewness under the models are presented.
Since the class of skew normal random variables is closed under the addition of independent standard normal random variables, we then consider an autoregressively characterized PAC model with a combination of independent skew normal and normal innovations. Explicit expressions for the marginals, which all have skew normal distributions, and maximum likelihood estimates of model parameters, are given.
Numerical results show that these three proposed models may provide reasonable fits to some continuous non-Gaussian longitudinal data sets. Furthermore, we compare the fits of these models to the Treatment A cattle growth data using penalized likelihood criteria, and demonstrate that the AD(2) multivariate skew normal model fits the data best among those proposed models.
|
8 |
Um modelo de resposta ao item para grupos múltiplos com distribuições normais assimétricas centralizadas / A multiple group IRT model with skew-normal latent trait distribution under the centred parametrizationSantos, José Roberto Silva dos, 1984- 20 August 2018 (has links)
Orientador: Caio Lucidius Naberezny Azevedo / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-20T09:23:25Z (GMT). No. of bitstreams: 1
Santos_JoseRobertoSilvados_M.pdf: 2068782 bytes, checksum: f8dc91d2f7f6091813ba229dc12991f4 (MD5)
Previous issue date: 2012 / Resumo: Uma das suposições dominantes nos modelos de resposta ao item (MRI) é a suposição de normalidade simétrica para modelar o comportamento dos traços latentes. No entanto, tal suposição tem sido questionada em vários trabalhos como, por exemplo, nos trabalhos de Micceri (1989) e Bazán et.al (2006). Recentemente Azevedo et.al (2011) propuseram um MRI com distribuição normal assimétrica centralizada para os traços latentes, considerando a estrutura de um único grupo de indivíduos. No presente trabalho fazemos uma extensão desse modelo para o caso de grupos múltiplos. Desenvolvemos dois algoritmos MCMC para estimação dos parâmetros utilizando a estrutura de dados aumentados para representar a função de resposta ao item (FRI), veja Albert (1992). O primeiro é um amostrador de Gibbs com passos de Metropolis-Hastings. No segundo utilizamos representações estocásticas (gerando uma estrutura hierárquica) das densidades a priori dos traços latentes e parâmetros populacionais conseguindo, assim, formas conhecidas para todas as distribuições condicionais completas, o que nos possibilitou desenvolver o amostrador de Gibbs completo. Comparamos esses algoritmos utilizando como critério o tamanho efetivo de amostra, veja Sahu (2002). O amostrador de Gibbs completo obteve o melhor desempenho. Também avaliamos o impacto do número de respondentes por grupo, número de itens por grupo, número de itens comuns, assimetria da distribuição do grupo de referência e priori, na recuperação dos parâmetros. Os resultados indicaram que nosso modelo recuperou bem todos os parâmetros, principalmente, quando utilizamos a priori de Jeffreys. Além disso, o número de itens por grupo e o número de examinados por grupo, mostraram ter um alto impacto na recuperação dos traços latentes e parâmetros dos itens, respectivamente. Analisamos um conjunto de dados reais que apresenta indícios de assimetria na distribuição dos traços latentes de alguns grupos. Os resultados obtidos com o nosso modelo confirmam a presença de assimetria na maioria dos grupos. Estudamos algumas medidas de diagnóstico baseadas na distribuição preditiva de medidas de discrepância adequadas. Por último, comparamos os modelos simétrico e assimétrico utilizando os critérios sugeridos por Spiegelhalter et al. (2002). O modelo assimétrico se ajustou melhor aos dados segundo todos os critérios / Abstract: An usual assumption for parameter estimation in the Item Response Models (IRM) is to assume that the latent traits are random variables which follow a normal distribution. However, many works suggest that this assumption does not apply in many cases. For example, the works of Micceri (1989) and Bazán (2006). Recently Azevedo et.al (2011) proposed an IRM with skew-normal distribution under the centred parametrization for the latent traits, considering one single group of examinees. In the present work, we developed an extension of this model to account for multiple groups. We developed two MCMC algorithms to parameter estimation using the augmented data structure to represent the Item response function (IRF), see Albert (1992). The First is a Metropolis-Hastings within Gibbs sampling. In the second, we use stochastic representations (creating a hierarchical structure) in the prior distribution of the latent traits and population parameters. Therefore, we obtained known full conditional distributions, which enabled us to develop the full Gibbs sampler. We compared these algorithms using the effective sample size criteria, see Sahu (2002). The full Gibbs sampling presented the best performance. We also evaluated the impact of the number of examinees per group, number of items per group, number of common items, priors and asymmetry of the reference group, on the parameter recovery. The results indicated that our approach recovers properly all parameters, mainly, when we consider the Jeffreys prior. Furthermore, the number of items per group and the number of examinees per group, showed to have a high impact on the recovery of the true of latent traits and item parameters, respectively. We analyze a real data set in which we found an evidence of asymmetry in the distribution of latent traits of some groups. The results obtained with our model confirmed the presence of asymmetry in most groups. We studied some diagnostic measures based on predictive distribution of appropriate discrepancy measures. Finally, we compared the symmetric and asymmetric models using the criteria suggested by Spiegelhalter et al. (2002). The asymmetrical model fits better according to all criteria / Mestrado / Estatistica / Mestre em Estatística
|
9 |
Modelos de regressão Birnbaum-Saunders baseados na distribuição normal assimétrica centrada / Birnbaum-Saunders regression models based on skew-normal centered distributionChaves, Nathalia Lima, 1989- 26 August 2018 (has links)
Orientadores: Caio Lucidius Naberezny Azevedo, Filidor Edilfonso Vilca Labra / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T22:33:37Z (GMT). No. of bitstreams: 1
Chaves_NathaliaLima_M.pdf: 3044792 bytes, checksum: 8fea3cd9d074997b605026a7a4526c35 (MD5)
Previous issue date: 2015 / Resumo: A classe de modelos Birnbaum-Saunders (BS) foi desenvolvida a partir de problemas que surgiram na área de confiabilidade de materiais. Tais problemas, em geral, são ligados ao estudo de fadiga de materiais. No entanto, nos últimos tempos, essa classe de modelos tem sido aplicada em áreas fora do referido contexto como, por exemplo, em ciências da saúde, ambiental, florestal, demográficas, atuariais, financeira, entre outras, devido à sua grande versatilidade. Neste trabalho desenvolvemos a distribuição Birnbaum-Saunders (BS) baseada na normal assimétrica padrão sob a parametrização centrada (BSNAC) que, além de representar uma extensão da distribuição BS usual, apresenta diversas vantagens em relação à distribuição BS baseada na distribuição normal assimétrica sob a parametrização usual. Desenvolvemos também um modelo de regressão linear log-Birnbaum-Saunders. Apresentamos, tanto para a distribuição BSNAC quanto para o respectivo modelo de regressão, diversas propriedades. Desenvolvemos procedimentos de estimação sob os enfoques frenquentista e bayesiano, bem como ferramentas de diagnóstico para os modelos propostos, contemplando análise residual e medidas de influência. Realizamos estudos de simulação, considerando diferentes cenários, com o intuito de comparar as estimativas frequentistas e bayesianas, bem como avaliar o desempenho das medidas de diagnóstico. A metodologia aqui proposta foi ilustrada tanto com dados provenientes de estudos de simulação, quanto com conjuntos de dados reais / Abstract: The class of Birnbaum-Saunders (BS) models was developed from problems that arose in the field of material reliability. These problems generally are related to the study of material fatigue. However, in the last years, this class of models has been applied in areas outside that context, such as in health sciences, environmental, forestry, demographic, actuarial, financial, among others, due to its great versatility. In this work, we developed the skew-normal Birnbaum-Saunders distribution under the centered parameterization (BSNAC), which also represents an extension of the usual BS distribution and presents several advantages over the BS distribution based on the skew-normal distribution under the usual parameterization. We also developed a log-Birnbaum-Saunders linear regression model. We present several properties of both BSNAC distribution and the related regression model. We develop estimation procedures under the frequentist and Bayesian approaches, as well as diagnostic tools for the proposed models, contemplating residual analysis and measures of influence. We conducted simulation studies considering different scenarios, in order to compare the frequentist and Bayesian estimates and evaluate the performance of diagnostic measures. The methodology proposed here is illustrated with data sets from both simulation studies and real data sets / Mestrado / Estatistica / Mestra em Estatística
|
10 |
Computation of High-Dimensional Multivariate Normal and Student-t Probabilities Based on Matrix Compression SchemesCao, Jian 22 April 2020 (has links)
The first half of the thesis focuses on the computation of high-dimensional multivariate normal (MVN) and multivariate Student-t (MVT) probabilities. Chapter 2 generalizes the bivariate conditioning method to a d-dimensional conditioning method and combines it with a hierarchical representation of the n × n covariance matrix. The resulting two-level hierarchical-block conditioning method requires Monte Carlo simulations to be performed only in d dimensions, with d ≪ n, and allows the dominant complexity term of the algorithm to be O(n log n). Chapter 3 improves the block reordering scheme from Chapter 2 and integrates it into the Quasi-Monte Carlo simulation under the tile-low-rank representation of the covariance matrix. Simulations up to dimension 65,536 suggest that this method can improve the run time by one order of magnitude compared with the hierarchical Monte Carlo method. The second half of the thesis discusses a novel matrix compression scheme with Kronecker products, an R package that implements the methods described in Chapter 3, and an application study with the probit Gaussian random field. Chapter 4 studies the potential of using the sum of Kronecker products (SKP) as a compressed covariance matrix representation. Experiments show that this new SKP representation can save the memory footprint by one order of magnitude compared with the hierarchical representation for covariance matrices from large grids and the Cholesky factorization in one million dimensions can be achieved within 600 seconds. In Chapter 5, an R package is introduced that implements the methods in Chapter 3 and show how the package improves the accuracy of the computed excursion sets. Chapter 6 derives the posterior properties of the probit Gaussian random field, based on which model selection and posterior prediction are performed. With the tlrmvnmvt package, the computation becomes feasible in tens of thousands of dimensions, where the prediction errors are significantly reduced.
|
Page generated in 0.1075 seconds