Spelling suggestions: "subject:"skew angle"" "subject:"kew angle""
1 |
Analysis of a Prefabricated Concrete Skew Angle Slab BridgeBengtsson, Pär, Wallin, Johan January 2019 (has links)
Prefabricated concrete elements are widely used in the construction industry today. With advantages such as time savings, increased safety at the construction site and minimized material usage, prefab becomes a major challenger to the traditional on-site casting construction method. However, constructing a bridge in concrete still presents challenges when using prefab as a construction method. Hence, more research in the area is needed. This master thesis has been studying the behavior of a prefabricated skew angle slab and the connection between the slab and wall elements of a bridge. The study was conducted using a finite element software, where three 3D-models of skew angle slabs were created. The three models had different skew angles (0, 15 and 30 degrees) and crossed the same path. The models could represent both the slab and the slab-wall connection. The finite element analysis showed that slabs with angles up to 15 degrees could be designed as a straight bridge. However, when the skew angle increases to 30 degrees, the behavior of the slab and connection changes significantly. Furthermore, the results show that a stress concentration occurs in the obtuse corner and that the stress increases when the skew angle increases. Moreover, there is a slight uplift in the acute corner when the skew angle increases to 30 degrees.
|
2 |
Thermal Response of Integral Abutment Bridges With Mse Walls: Numerical Analyses and a Practical Analysis ToolArenas, Alfredo Eduardo 12 January 2011 (has links)
The advantages of Integral Abutment Bridges (IABs) include reduced maintenance costs and increased useful life spans. However, comprehensive and practical analysis tools for design of IABs have not been developed to account for the impacts of thermal displacements on abutment and foundation components, including the components of mechanically stabilized earth (MSE) walls that are often used around the abutment piling.
During this research, over 65 three-dimensional numerical analyses were performed to investigate and quantify how different structural and geotechnical bridge components behave during thermal expansion and contraction of the bridge deck. In addition, separate three-dimensional numerical models were developed to evaluate the usefulness of corrugated steel pipes around the abutment piles.
The results of this research quantify the influence of design parameter variations on the effects of thermal displacement on system components, and thus provide guidelines for IAB design, where none had existed before. One of the findings is that corrugated steel pipes around abutment piles are not necessary.
One of the most important products of this research is an easy-to-use Excel spreadsheet, named IAB v2, that not only quantifies the impact of thermal displacement in the longitudinal direction, but also in the transverse direction when the abutment wall is at a skew angle to the bridge alignment. The spreadsheet accommodates seven different pile sizes, which can be oriented in weak or strong directions, with variable offset of the abutment from the MSE wall and for variable skew angles. The spreadsheet calculates the increment of displacements, forces, moments, and pressures on systems components due to thermal displacement of IABs. / Ph. D.
|
3 |
Control of Torsionalpendulum on Containercranes / Reglering av torsionspendel på containerkranarBäck, Pär January 2004 (has links)
<p>A container crane of STS-type, Ship To Shore, consists of a spreader hanging underneath a railrunning trolly. As the container is under the influence of wind, it is likely that it starts to turn in a torsional pendulum. This report handles how the torsional pendulum of a container crane can be damped. </p><p>A number of different models have been developed to analyze how different placement of the actuators affects the system. Two differens types of controllers, LQG and MPC, have been developed and applied to these models. The different models and controlers were evaluated and compared by studying simulation results in timedomain. Moreover in order to make the simulations more realistic, a wind model has been developed and applied. </p><p>The models and controllers have been analyzed with bodediagrams and sensitivity functions. </p><p>The analyses shows clearly that the best placement of the actuators for control of the torsional pendulum on an STS-crane is in the trolly, pulling and relaxing the wires. This control is best handled by a state feedback control (LQG). Furthermore, the control should in this way, with addition of in the horizontalplane movable suspensions in the trolly, work acceptably in the whole operational area of a STS-crane.</p>
|
4 |
Control of Torsionalpendulum on Containercranes / Reglering av torsionspendel på containerkranarBäck, Pär January 2004 (has links)
A container crane of STS-type, Ship To Shore, consists of a spreader hanging underneath a railrunning trolly. As the container is under the influence of wind, it is likely that it starts to turn in a torsional pendulum. This report handles how the torsional pendulum of a container crane can be damped. A number of different models have been developed to analyze how different placement of the actuators affects the system. Two differens types of controllers, LQG and MPC, have been developed and applied to these models. The different models and controlers were evaluated and compared by studying simulation results in timedomain. Moreover in order to make the simulations more realistic, a wind model has been developed and applied. The models and controllers have been analyzed with bodediagrams and sensitivity functions. The analyses shows clearly that the best placement of the actuators for control of the torsional pendulum on an STS-crane is in the trolly, pulling and relaxing the wires. This control is best handled by a state feedback control (LQG). Furthermore, the control should in this way, with addition of in the horizontalplane movable suspensions in the trolly, work acceptably in the whole operational area of a STS-crane.
|
5 |
Development and study of noise generation from propellers / Utveckling och studie av ljud genererat från propellrarAnton Dunström, Anton, Skjernov, Fredrik January 2022 (has links)
Noise generation from underwater activities propagates into the marine environment.For marine vessels the propulsion system generates the most noise during itsoperations. Naval vessels that want to operate without being detected want to controlthe sound generating properties of the vessel. To control the sound generatingproperties this project has been looking into the existing propeller of the submergedcraft Carrier Seal that is produced by James Fisher Defense. Then a new and bespokenpropeller has been developed with theories applied to minimize its noise generatingproperties. The properties of the propeller that have been altered is the number ofblades, blade area ratio, pitch and skew angle. These properties have been alteredwith aid of the open-source software for Matlab named Openprop. From the finalpropeller design a prototype was later produced, tested and compared to the existingpropeller of the Seal Carrier. To test and compare these two propellers a test procedurewith inspiration from NATO and the Swedish Defense and Research Agency (FOI) wasdeveloped. The results from the comparison show that the sound pressure level fromthe propeller spectrum could be lowered with 3 dB re 1 μP a for the vessels design speedand several blade tones could be eliminated entirely. Simultaneously the efficiency ofthe vessel is increased throughout its speed range.In conclusions the recommendation to JFD is to change their existing propeller tothis bespoken propeller as it has proven itself to better in every way during thesetrials. / Ljud som genererats under vatten sprider sig långt från källan där de uppstått. Frånmarina fartyg är det framdrivningssystemet som står för majoriteten av det genereradeljudet. För militära fartyg som inte vill upptäckas är det av yttersta vikt att minimeraljuden som genereras ombord. För att kontrollera detta har det här projektet riktatin sig på fartyget Carrier Seal som tillverkas utav James Fisher Defense (JFD) ochdess propeller. Den existerande propellern har analyserats och därefter har en nyoch förbättrad propeller utvecklats. Utvecklingen har gjorts genom att tillämpatillgängliga teorier som gått ut på att minska propellerns ljudskapande egenskaper.Propelleregenskaperna som har undersökts är antalet blad som propellern har, dessbladtäckningsgrad, stigning och skevningsvinkel. Dessa egenskaper har varierats medhjälp av mjukvaran Openprop som körs i Matlab för att hitta en kombination somgenererar mindre ljud än sin föregångare. Därefter har en prototyp tillverkats ochtestats för att sedan jämföras med den existerande propellern. Testproceduren somgenomförts har tagits fram med inspiration från liknande procedurer som genomförtsav NATO och FOI. Resultatet från jämförelsen visar att ljudtrycksnivån från propellernhar kunnat minskats med 3 dB re 1 μP a för hela propellerspektrumet vid farkostensmarschfart och flertalet bladtoner kunde elimineras helt och hållet. Samtidigt someffektiviten kunnat förbättras över hela fartområdet.Slutsatsen som kan dras av arbetet är att JFD rekommenderas att byta deras nuvarandepropeller till den förbättrade propellern eftersom den har visat sig avsevärt mycketbättre under dessa tester.
|
Page generated in 0.059 seconds