Spelling suggestions: "subject:"skew normal anda sker t"" "subject:"skew normal anda ske t""
1 |
Topics on Regularization of Parameters in Multivariate Linear RegressionChen, Lianfu 2011 December 1900 (has links)
My dissertation mainly focuses on the regularization of parameters in the multivariate linear regression under different assumptions on the distribution of the errors. It consists of two topics where we develop iterative procedures to construct sparse estimators for both the regression coefficient and scale matrices simultaneously, and a third topic where we develop a method for testing if the skewness parameter in the skew-normal distribution is parallel to one of the eigenvectors of the scale matrix.
In the first project, we propose a robust procedure for constructing a sparse estimator of a multivariate regression coefficient matrix that accounts for the correlations of the response variables. Robustness to outliers is achieved using heavy-tailed t distributions for the multivariate response, and shrinkage is introduced by adding to the negative log-likelihood l1 penalties on the entries of both the regression coefficient matrix and the precision matrix of the responses. Taking advantage of the hierarchical representation of a multivariate t distribution as the scale mixture of normal distributions and the EM algorithm, the optimization problem is solved iteratively where at each EM iteration suitably modified multivariate regression with covariance estimation (MRCE) algorithms proposed by Rothman, Levina and Zhu are used. We propose two new optimization algorithms for the penalized likelihood, called MRCEI and MRCEII, which differ from MRCE in the way that the tuning parameters for the two matrices are selected. Estimating the degrees of freedom when penalizing the entries of the matrices presents new computational challenges. A simulation study and real data analysis demonstrate that the MRCEII, which selects the tuning parameter of the precision matrix of the multiple responses using the Cp criterion, generally does the best among all methods considered in terms of the prediction error, and MRCEI outperforms the MRCE methods when the regression coefficient matrix is less sparse.
The second project is motivated by the existence of the skewness in the data for which the symmetric distribution assumption on the errors does not hold. We extend the procedure we have proposed to the case where the errors in the multivariate linear regression follow a multivariate skew-normal or skew-t distribution. Based on the convenient representation of skew-normal and skew-t as well as the EM algorithm, we develop an optimization algorithm, called MRST, to iteratively minimize the negative penalized log-likelihood. We also carry out a simulation study to assess the performance of the method and illustrate its application with one real data example.
In the third project, we discuss the asymptotic distributions of the eigenvalues and eigenvectors for the MLE of the scale matrix in a multivariate skew-normal distribution. We propose a statistic for testing whether the skewness vector is proportional to one of the eigenvectors of the scale matrix based on the likelihood ratio. Under the alternative, the likelihood is maximized numerically with two different ways of parametrization for the scale matrix: Modified Cholesky Decomposition (MCD) and Givens Angle. We conduct a simulation study and show that the statistic obtained using Givens Angle parametrization performs well and is more reliable than that obtained using MCD.
|
2 |
Misturas finitas de normais assimétricas e de t assimétricas aplicadas em análise discriminanteCoelho, Carina Figueiredo 28 June 2013 (has links)
Submitted by Kamila Costa (kamilavasconceloscosta@gmail.com) on 2015-06-18T20:16:38Z
No. of bitstreams: 1
Dissertação-Carina Figueiredo Coelho.pdf: 3096964 bytes, checksum: 57c06ccd1fdc732a7cf9a50381d3806b (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-07-06T15:29:34Z (GMT) No. of bitstreams: 1
Dissertação-Carina Figueiredo Coelho.pdf: 3096964 bytes, checksum: 57c06ccd1fdc732a7cf9a50381d3806b (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-07-06T15:27:26Z (GMT) No. of bitstreams: 1
Dissertação-Carina Figueiredo Coelho.pdf: 3096964 bytes, checksum: 57c06ccd1fdc732a7cf9a50381d3806b (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-07-06T15:33:36Z (GMT) No. of bitstreams: 1
Dissertação-Carina Figueiredo Coelho.pdf: 3096964 bytes, checksum: 57c06ccd1fdc732a7cf9a50381d3806b (MD5) / Made available in DSpace on 2015-07-06T15:33:36Z (GMT). No. of bitstreams: 1
Dissertação-Carina Figueiredo Coelho.pdf: 3096964 bytes, checksum: 57c06ccd1fdc732a7cf9a50381d3806b (MD5)
Previous issue date: 2013-06-28 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / We investigated use of finite mixture models with skew normal independent distributions
to model the conditional distributions in discriminat analysis, particularly the skew
normal and skew t. To evaluate this model, we developed a simulation study and applications
with real data sets, analyzing error rates associated with the classifiers obtained with
these mixture models. Problems were simulated with different structures and separations
for the classes distributions employing different training set sizes. The results of the study
suggest that the models evaluated are able to adjust to different problems studied, from
the simplest to the most complex in terms of modeling the observations for classification
purposes. With real data, where then shapes distributions of the class is unknown, the
models showed reasonable error rates when compared to other classifiers. As a limitation
for the analized sets of data was observed that modeling by finite mixtures requires large
samples per class when the dimension of the feature vector is relatively high. / Investigamos o emprego de misturas finitas de densidades na família normal assimétrica
independente, em particular a normal assimétrica e a t assimétrica, para modelar as
distribuições condicionais do vetor de características em Análise Discriminante (AD). O
objetivo é obter modelos capazes de modelar dados com estruturas mais complexas onde,
por exemplo, temos assimetria e multimodalidade, o quemuitas vezes ocorrem em problemas
reais de AD. Para avaliar esta modelagem, desenvolvemos um estudo de simulação
e aplicações em dados reais, analisando a taxa de erro (TE) associadas aos classificadores
obtidos com estes modelos de misturas. Foram simulados problemas com diferentes
estruturas, relativas à separação e distribuição das classes e o tamanho do conjunto de
treinamento. Os resultados do estudo sugerem que os modelos avaliados são capazes de
se ajustar aos diferentes problemas estudados, desde os mais simples aos mais complexos,
em termos de modelagem das observações para fins de classificação. Com os dados
reais, situações onde desconhecemos as formas das distribuições nas classes, os modelos
apresentaram TE’s razoáveis quando comparados a outros classificadores. Como uma
limitação, para os conjuntos de dados analisados, foi observado que a modelagem por
misturas finitas necessita de amostras grandes por classe em situações onde a dimensão
do vetor de características é relativamente alta.
|
3 |
Calibração linear assimétrica / Asymmetric Linear CalibrationFigueiredo, Cléber da Costa 27 February 2009 (has links)
A presente tese aborda aspectos teóricos e aplicados da estimação dos parâmetros do modelo de calibração linear com erros distribuídos conforme a distribuição normal-assimétrica (Azzalini, 1985) e t-normal-assimétrica (Gómez, Venegas e Bolfarine, 2007). Aplicando um modelo assimétrico, não é necessário transformar as variáveis a fim de obter erros simétricos. A estimação dos parâmetros e das variâncias dos estimadores do modelo de calibração foram estudadas através da visão freqüentista e bayesiana, desenvolvendo algoritmos tipo EM e amostradores de Gibbs, respectivamente. Um dos pontos relevantes do trabalho, na óptica freqüentista, é a apresentação de uma reparametrização para evitar a singularidade da matriz de informação de Fisher sob o modelo de calibração normal-assimétrico na vizinhança de lambda = 0. Outro interessante aspecto é que a reparametrização não modifica o parâmetro de interesse. Já na óptica bayesiana, o ponto forte do trabalho está no desenvolvimento de medidas para verificar a qualidade do ajuste e que levam em consideração a assimetria do conjunto de dados. São propostas duas medidas para medir a qualidade do ajuste: o ADIC (Asymmetric Deviance Information Criterion) e o EDIC (Evident Deviance Information Criterion), que são extensões da ideia de Spiegelhalter et al. (2002) que propôs o DIC ordinário que só deve ser usado em modelos simétricos. / This thesis focuses on theoretical and applied estimation aspects of the linear calibration model with skew-normal (Azzalini, 1985) and skew-t-normal (Gómez, Venegas e Bolfarine, 2007) error distributions. Applying the asymmetrical distributed error methodology, it is not necessary to transform the variables in order to have symmetrical errors. The frequentist and the Bayesian solution are presented. The parameter estimation and its variance estimation were studied using the EM algorithm and the Gibbs sampler, respectively, in each approach. The main point, in the frequentist approach, is the presentation of a new parameterization to avoid singularity of the information matrix under the skew-normal calibration model in a neighborhood of lambda = 0. Another interesting aspect is that the reparameterization developed to make the information matrix nonsingular, when the skewness parameter is near to zero, leaves the parameter of interest unchanged. The main point, in the Bayesian framework, is the presentation of two measures of goodness-of-fit: ADIC (Asymmetric Deviance Information Criterion) and EDIC (Evident Deviance Information Criterion ). They are natural extensions of the ordinary DIC developed by Spiegelhalter et al. (2002).
|
4 |
Calibração linear assimétrica / Asymmetric Linear CalibrationCléber da Costa Figueiredo 27 February 2009 (has links)
A presente tese aborda aspectos teóricos e aplicados da estimação dos parâmetros do modelo de calibração linear com erros distribuídos conforme a distribuição normal-assimétrica (Azzalini, 1985) e t-normal-assimétrica (Gómez, Venegas e Bolfarine, 2007). Aplicando um modelo assimétrico, não é necessário transformar as variáveis a fim de obter erros simétricos. A estimação dos parâmetros e das variâncias dos estimadores do modelo de calibração foram estudadas através da visão freqüentista e bayesiana, desenvolvendo algoritmos tipo EM e amostradores de Gibbs, respectivamente. Um dos pontos relevantes do trabalho, na óptica freqüentista, é a apresentação de uma reparametrização para evitar a singularidade da matriz de informação de Fisher sob o modelo de calibração normal-assimétrico na vizinhança de lambda = 0. Outro interessante aspecto é que a reparametrização não modifica o parâmetro de interesse. Já na óptica bayesiana, o ponto forte do trabalho está no desenvolvimento de medidas para verificar a qualidade do ajuste e que levam em consideração a assimetria do conjunto de dados. São propostas duas medidas para medir a qualidade do ajuste: o ADIC (Asymmetric Deviance Information Criterion) e o EDIC (Evident Deviance Information Criterion), que são extensões da ideia de Spiegelhalter et al. (2002) que propôs o DIC ordinário que só deve ser usado em modelos simétricos. / This thesis focuses on theoretical and applied estimation aspects of the linear calibration model with skew-normal (Azzalini, 1985) and skew-t-normal (Gómez, Venegas e Bolfarine, 2007) error distributions. Applying the asymmetrical distributed error methodology, it is not necessary to transform the variables in order to have symmetrical errors. The frequentist and the Bayesian solution are presented. The parameter estimation and its variance estimation were studied using the EM algorithm and the Gibbs sampler, respectively, in each approach. The main point, in the frequentist approach, is the presentation of a new parameterization to avoid singularity of the information matrix under the skew-normal calibration model in a neighborhood of lambda = 0. Another interesting aspect is that the reparameterization developed to make the information matrix nonsingular, when the skewness parameter is near to zero, leaves the parameter of interest unchanged. The main point, in the Bayesian framework, is the presentation of two measures of goodness-of-fit: ADIC (Asymmetric Deviance Information Criterion) and EDIC (Evident Deviance Information Criterion ). They are natural extensions of the ordinary DIC developed by Spiegelhalter et al. (2002).
|
Page generated in 0.0853 seconds