• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Codes de Gabidulin en caractéristique nulle : application au codage espace-temps / Gabidulin codes in characteristic 0 : applications to space-time coding

Robert, Gwezheneg 04 December 2015 (has links)
Les codes espace-temps sont des codes correcteurs dédiés aux transmissions MIMO. Mathématiquement, un code espace-temps est un ensemble fini de matrices complexes. Ses performances dépendent de plusieurs critères, dont la distance minimale en métrique rang. Les codes de Gabidulin sont des codes dans cette métrique, connus pour leur optimalité et pour l'existence d'algorithmes de décodage efficaces. C'est pourquoi ils sont utilisés pour concevoir des codes espace-temps. La principale difficulté est alors de construire des matrices complexes à partir de matrices binaires. Les travaux présentés dans ce documents consistent à généraliser les codes de Gabidulin à des corps de nombres, en particulier des extensions cyclique. Nous verrons qu'ils ont les mêmes propriétés que leurs analogues sur les corps finis. Nous étudierons plusieurs modèles d'erreurs et d'effacements et présenterons un algorithme qui permettra de retrouver l'information transmise avec une complexité quadratique. En calculant dans des corps infinis, nous serons confrontés au problème de la taille des éléments, qui augmente exponentiellement au gré des calculs. Pour éviter ce désagrément, nous verrons qu'il est possible de réduire le code afin de calculer dans un corps fini. Enfin, nous proposerons une famille de codes espace-temps dont la construction est basée sur les codes de Gabidulin généralisés. Nous verrons que leurs performances sont similaires à celles des codes existants, et qu'ils disposent d'une structure supplémentaire. / Space-time codes are error correcting codes dedicated to MIMO transmissions. Mathematically, a space-time code is a finite family of complex matrices. Its preformances rely on several parameters, including its minimal rank distance. Gabidulin codes are codes in this metric, famous for their optimality and thanks to efficient decoding algorithms. That's why they are used to design space-time codes. The main difficulty is to design complex matrices from binary matrices. The aim of the works collected here is to generalize Gabidulin codes to number fields, especially cyclique extesnions. We see that they have the same properties than Gabidulin codes over finite fields. We study several errors and erasures models and introduce a quadratic algorithm to recover transmitted information. When computing in finite fields, we are faced with the growing size problem. Indeed, the size of the coefficients grows exponentielly along the algorithm. To avoid this problem, it is possible to reduce the code, in order to compute in a finite field. Finally, we design a family of space-time codes, based on generalised Gabidulin codes. We see that our codes have performances similar to those of existing codes, and that they have additional structure.
2

Analyse de nouvelles primitives cryptographiques pour les schémas Diffie-Hellman / Analysis of new cryptographic primitives for Diffie-Hellman schemes

Kammerer, Jean-Gabriel 23 May 2013 (has links)
L'objet de cette thèse est l'étude de diverses primitives cryptographiques utiles dans des protocoles Diffie-Hellman. Nous étudions tout d'abord les protocoles Diffie-Helmman sur des structures commutatives ou non. Nous en proposons une formulation unifiée et mettons en évidence les différents problèmes difficiles associés dans les deux contextes. La première partie est consacrée à l'étude de pseudo-paramétrisations de courbes algébriques en temps constant déterministe, avec application aux fonctions de hachage vers les courbes. Les propriétés des courbes algébriques en font une structure de choix pour l'instanciation de protocoles reposant sur le problème Diffie-Hellman. En particulier, ces protocoles utilisent des fonctions qui hachent directement un message vers la courbe. Nous proposons de nouvelles fonctions d'encodage vers les courbes elliptiques et pour de larges classes de fonctions hyperelliptiques. Nous montrons ensuite comment l'étude de la géométrie des tangentes aux points d'inflexion des courbes elliptiques permet d'unifier les fonctions proposées tant dans la littérature que dans cette thèse. Dans la troisième partie, nous nous intéressons à une nouvelle instanciation de l'échange Diffie-Hellman. Elle repose sur la difficulté de résoudre un problème de factorisation dans un anneau de polynômes non-commutatifs. Nous montrons comment un problème de décomposition Diffie-Hellman sur un groupe non-commutatif peut se ramener à un simple problème d'algèbre linéaire pourvu que les éléments du groupe admettent une représentation par des matrices. Bien qu'elle ne soit pas applicable directement au cas des polynômes tordus puisqu'ils n'ont pas d'inverse, nous profitons de l'existence d'une notion de divisibilité pour contourner cette difficulté. Finalement, nous montrons qu'il est possible de résoudre le problème Diffie-Hellman sur les polynômes tordus avec complexité polynomiale. / In this thesis, we study several cryptographic primitives of use in Diffie-Hellman like protocols. We first study Diffie-Hellman protocols on commutative or noncommutative structures. We propose an unified wording of such protocols and bring out on which supposedly hard problem both constructions rely on. The first part is devoted to the study of pseudo-parameterization of algebraic curves in deterministic constant time, with application to hash function into curves. Algebraic curves are indeed particularly interesting for Diffie-Hellman like protocols. These protocols often use hash functions which directly hash into the curve. We propose new encoding functions toward elliptic curves and toward large classes of hyperelliptic curves. We then show how the study of the geometry of flex tangent of elliptic curves unifies the encoding functions as proposed in the litterature and in this thesis. In the third part, we are interested in a new instantiation of the Diffie-Hellman key exchange. It relies on the difficulty of factoring in a non-commutative polynomial ring. We show how to reduce a Diffie-Hellman decomposition problem over a noncommutative group to a simple linear algebra problem, provided that group elements can be represented by matrices. Although this is not directly relevant to the skew polynomial ring because they have no inverse, we use the divisibility to circumvent this difficulty. Finally, we show it's possible to solve the Diffie-Hellman problem on skew polynomials with polynomial complexity.

Page generated in 0.0813 seconds