Spelling suggestions: "subject:"skewed normal distribtuion"" "subject:"skewed normal distribuition""
1 |
混合分配下之估計模型鑑別力比較 / Comparison of Estimating Discriminatory Power under Mixed Model廖雅薇 Unknown Date (has links)
銀行在評分模型建置完成後需進行驗證工作,以瞭解評分模型是否能有效評出客戶的風險層級,穩健地估計區別鑑別力指標為驗證工作中的重點。在先前的文獻中假設正常授信戶與違約戶分數分配為常態分配。但在實際資料中,分配未必定為常態。因此本文接著探討在正常授信戶與違約授信戶之分配為混合分配,即兩分數分配為偏斜常態分配下,何種方法可以對於估計AUC具有較高的穩定性。本文比較五種估計AUC的方法,分別為常態核,經驗分配,曼惠尼近似,最大摡似法和EM演算法。模擬結果呈現(1)投信戶組合分配為兩常態分配下,最大摡似法在大部分違約率下都可以得到較窄的信賴區間。(2)組合分配為一常態與一偏斜常態及兩偏斜常態分配下,EM演算法在大部分情況有較窄的信賴區間,其中在兩偏斜常態分配下,表現更佳。(3)曼惠尼近似建構的信賴區間寬度最大,代表曼惠尼近似是較保守的估計方法。 / Banks face discrimination after constructing the rating systems to figure out whether the systems can discriminate defaulting and non-defaulting borrowers. Literature assumed the two score distribuion are normal distributed. However, the real data may not be normal distribuions. We assum the two score distribuions are skewed normal distribuions to discuss which method has more robustness to estimate the AUC value.Under skewed distribution, we propose EM algorithm to estimate the population parametric. If used properly, information about the population properties may be used to get better accuracy of estimation the AUC value.Numerical results show the EM algorithm method , comparing with other methods, has robustness in detect the rating systems have discirmatory power.
|
Page generated in 0.073 seconds