• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predicting fatigue crack growth life in integral metallic skin-stringer panels

Shi, Zhijun 01 1900 (has links)
During the past few years, in comparison to traditional riveted structures, integral metallic skin stringer structures have played more and more important roles in aircraft design due to the fact they are economical and also have the ability to reduce weight. Their wide application in aircraft, especially large integral structures is limited because of the fact that they have shortcomings in damage tolerance performance. Hence, calculating the crack growth lives and improving the damage tolerance performance of integral structures by selecting appropriate materials or choosing rational structures is a critical work. Therefore the purpose of this thesis is to find effective analysis methods of integral metallic skin-stringer panels for the use in engineering. Cont/d.
2

Study of delamination of composite hat skin stringer interface failure

Rajamanickam, Rajkumar January 2019 (has links)
The use of composite materials brought a tremendous breakthrough in the scientific world of aerospace engineering. The lack of understanding of the failure of composite materials can be disastrous. Composite laminated structures need to be thoroughly studied and investigated in the design stage. In this thesis, formed-hat skin stringer made of composite laminates is investigated. Delamination is the most common failure of laminated composites, which has two stages delamination onset and delamination propagation. In the preliminary design phase, firstly the structures need to be investigated for low-velocity impact to check the formation of damage onset due to the impact that may arise during manufacturing. In the detailed design phase, the structure is investigated to study the evolution of delamination growth under loading conditions. The structure is modeled using 3 D elements because of the presence of Interlaminar stresses in the width and thickness direction and anisotropic nature. In this thesis, more emphasis is given on the interface between the skin and the stringer. The debonding effect of the interface is studied using cohesive zone model(CZM).

Page generated in 0.0434 seconds