• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 250
  • 115
  • 50
  • 31
  • 24
  • 18
  • 8
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 578
  • 134
  • 109
  • 99
  • 95
  • 90
  • 88
  • 82
  • 74
  • 72
  • 62
  • 59
  • 51
  • 45
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Characterization of Different Slags for Bulk Geotechnical Applications

Logeshwari, J January 2017 (has links) (PDF)
Generation of wastes in the form of liquid, solid or gas is inevitable in any industry.Industrial Solid Waste is the waste that is generated from an industrial or manufacturing process and includes the waste generated from non-manufacturing activities as well.Most of these wastes fall under the category of Ashes, Slagsor Sludges. For the present work, three types of secondary lead slag, two types of granulated blast furnace slag (GBS) or iron slag and four types of steel slags were procured and studied.An elaborate study on various characteristics of the slags has been performed. Based on the results, all the possible applications for the individual slags are considered. The performance of the secondary lead slag as an embankment material was analyzed. The slope stability for various conditionswas analyzed using Geo5 and experimentally determined strength parameters. It was found that the material can be used safely for embankment constructions.The CBR values were very good in the range for both GBS and steel slag,thus repeated load triaxial test are done to determine the resilient modulus. k1-k3model was adopted and the regression coefficients were determined. Based on the results the pavement design is done using KENPAVE software. An exercise has been performed to determine the quantity of the conventional material that could be saved, considering the type and size of the pavement. For the aggregate sized steel slag, the tests were done to find the suitability of the material for various applications like, as railway ballast, concrete aggregate, gabion and rip rap stones. And the tests result shows the material to be suitable for these applications and is expected to perform well. Study on morphological parameters reveals that the size and gradation of any material plays an important role in its mechanical behavior, however in the case of slags, this could be tailor made by using appropriate crushers, as per the requirements.
62

Neutralization of acidic wastewaters with the use of landfilled Electric Arc Furnace (EAF) high-alloyed stainless-steel slag : An upscale trial of the NEUTRALSYRA project

Puthucode, Rahul January 2019 (has links)
The landfilling of slag obtained from the high alloyed Electric Arc Furnace (EAF) steel making process, constitutes an environmental treat for society as well as an economical problem for the companies producing it, due to the costs related to waste management practices. Conventional methods of slag recycling are abundantly used among the steelmaking business, but due to their particular physical properties, high- alloyed EAF slags cannot be properly valorized. Moreover, the pickling process that high-alloyed EAF steels undergo to, generates acidic wastewaters, that need to be collected and neutralized, before they can be recirculated into the natural water streams. For such a task, steel mills currently utilize slaked lime (a Ca rich mineral) to raise the pH and to remove any metal particles dissolved into the wastewaters. Slag contains high amount of Ca; therefore, it has already been tested as a slaked lime replacement. In fact, previous studies conducted at the Material Science and Engineering department at KTH Royal Institute of Technology showed, on a laboratory scale, that slag has the potential to replace lime for the neutralization and purification of the acidic wastewaters. This Master’s thesis project aims at upscaling the volumes of wastewaters to be tested, about 70 to 90 folds of the one from previous research, bridging the gap between laboratory tests and the industrial scale. The thesis is divided into three tranches, a first part where a water-salt solution conductivity trials were carried out, to model the behavior or slag dispersion in the acidic wastewaters. After the results obtained from the conductivity trials, neutralization trials with slag and the lime product currently in use by the company, were carried out at the neutralization plant in Outokumpu Stainless, Avesta (Sweden). The neutralization trials were carried out with 70 and 90 liters of acidic wastewaters and in order to perform the trials on site, the slag sample was dried and later sieved to a particle size of less than 350μm. Moreover, data was analyzed and compared to previous studies in order to have a clearer understanding regarding the neutralization efficiency of the slag, especially whether or not the technology would had worked on upscaled volumes. Additionally, the project checked if it was possible to find a generalized relationship between the mass of slag and volume of wastewaters required for the neutralization process. Slag demonstrated to be able to buffer the pH to the target values of 9, while also showing an almost linear trend compared to previous studies. The reaction progress between slag, lime, and the acidic wastewaters was also analyzed. / Deponering av slagg som erhållits från den höglegerade ljusbågsugn (EAF) stålframställningsprocessen utgör en miljömässig behandling för samhället och ettekonomiskt problem för de företag som producerar den på grund av kostnaderna för avfallshantering. Konventionella metoder för återvinning av slagg används i storutsträckning bland stålindustrin, men på grund av deras speciella fysiska egenskaper kan höglegerade EAF-slaggen inte värderas ordentligt. Dessutom produceras sura avloppsvatten av betningsprocessen som höglegerade EAF-stål genomgår som sedan måste samlas in och neutraliseras innan de kan återcirkuleras i det naturliga vattnet. För en sådan uppgift använder stålfabriker för närvarande släckt kalk (ett Ca-rikt mineral) för att höja pH-värdet och för att avlägsna alla metallpartiklar som löses upp i avloppsvattnet. Slaggen innehåller hög mängd Ca och därför har den testats som en ersättning till släckt kalk. Tidigare studier utförda vid avdelningen materialvetenskap och teknik vid Kungliga Tekniska Högskola visade på laboratorieskala att slagg har potential att ersätta kalk för neutralisering och rening av sura avloppsvatten. Detta examensarbete syftar till att skala upp volymerna av avloppsvattnet som ska testas till cirka 70–90 gånger av den från tidigare forskning, och därav fylla ut bryggan mellan laboratorietester och industriell skala. Avhandlingen är uppdelad i tre delar, Första delen innehåller försök på ledningsförmåga i en vatten-saltlösning som genomfördes för att modellera beteende eller slaggspridning i sura avloppsvatten. Efter de resultat som erhållits från konduktivitetsmätningarna genomfördes neutraliseringsförsök med slagg och kalk som för närvarande används av företaget vid neutraliseringsanläggningen i Outokumpu Stainless, Avesta (Sverige). Neutraliseringsförsöken genomfördes med 70 och 90 liter sura avloppsvatten och för att utföra experimenten på plats torkades slagg provet och siktades senare till en partikelstorlek på mindre än 350 μm. Dessutom analyserades data och jämfördes med tidigare studier för att få en tydligare förståelse för slaggens neutraliseringseffektivitet, särskilt huruvida tekniken skulle ha fungerat på större volymer, och även om det också var möjligt att hitta ett generaliserat samband mellan mängden slagg och volym avloppsvatten som krävs för neutraliseringsprocessen. Slagget visade sig kunna buffra pH till målvärdena 9, samtidigt som den visade en nästan linjär trend jämfört med tidigare studier. Reaktionsförloppet mellan slaggkalk och de sura avloppsvattnen analyserades också.
63

Erosion of refractories : mechanisms for dissolution of graphite by iron-carbon melts

Jonker-Brash, Robina Ann January 1995 (has links)
No description available.
64

FIELD AND LAB SCALE PERFORMANCE OF PHOSPHORUS REMOVAL IN POST-WETLAND SLAG FILTERS TREATING AQUACULTURE WASTEWATER IN COLD CLIMATES

Sansford, LAUREN 24 April 2013 (has links)
Eutrophication, caused by phosphorus and nitrogen overloading, is a global pollution problem for our fresh water lakes and streams. Regulatory bodies have developed treatment guidelines for point-source pollution to address this concern, creating a need for small and remote waste producers to develop low cost solutions for nutrient removal – in particular phosphorus. Constructed wetlands have often been implemented as a low cost alternative to treat various sources of wastewater, however, their efficiency in removing phosphorus has been questioned. Post-treatment blast furnace slag filters (known to have a high phosphorus sorption capacity) have been in operation since 2008 in Haliburton, Ontario, Canada, treating aquaculture wastewater following treatment by a constructed wetland. Phosphorus removal performance of three filters of varying configuration have been assessed: • a random packed filter, packed randomly with unsieved blast furnace slag removed only 26% of phosphorus overall and became severely clogged likely due to the presence of fines, poor flow distribution and formation of calcium carbonate precipitate; • a screen filter, designed as twenty individual filters separated by 3 inches of space to provide more uniform flow throughout removed 55% of the total phosphorus added and maintained a uniform flow throughout the study; and • an anaerobic filter, designed to be sealed from the atmosphere in an effort to prevent the formation of calcium carbonate and subsequent filter clogging, removed 19% of the total phosphorus added and revealed signs of poor flow distribution. Lab-scale flow through cells were designed to parallel the field scale studies and were operated at varying configuration, temperature and residence times to assess these factor effects on phosphorus removal. The results of this research provide a valuable contribution to research involving blast furnace slag filters for phosphorus removal. It has been demonstrated that cold temperatures reduce the slag filter’s efficiency to remove phosphorus (but cold-climate filters can still be effective in removing phosphorus), the removal of slag fines reduces the potential for slag clogging, a screen design is effective in promoting uniform flow and offsetting the effects of clogging and an optimum residence time may exist for phosphorus removal beyond which phosphorus removal is minimal. / Thesis (Master, Civil Engineering) -- Queen's University, 2013-04-23 21:46:44.136
65

Thermodynamic activity of MnO in manganese slags and slag-metal equilibria

Cengizler, Hakan 09 February 2015 (has links)
No description available.
66

Estudo \"Post Mortem\" em revestimentos refratários em panela de aciaria elétrica / Post Mortem study on refractory lining of eletric steel ladle

Mota, Rejane Carneiro 11 August 2017 (has links)
O desgaste em revestimentos refratários é um dos problemas críticos encontrados em ambientes siderúrgicos, que limita a produtividade do processo devido a necessidade de paradas para manutenção nos equipamentos industriais, em favor da substituição do revestimento refratário em regiões desgastadas. Para identificar e caracterizar os mecanismos de desgaste gerados pela ação do banho metal/escória na microestrutura de materiais refratários utilizados como revestimento de panelas de aço de aciaria elétrica, o objetivo deste trabalho foi dividido em três etapas. A primeira etapa é denominada de estudo \"Post-Mortem\", que consiste na amostragem dos tijolos refratários da panela de aço, ao qual foram preparados para análises físico-químicas e microestruturais para a identificação dos mecanismos de desgastes atuantes. A segunda etapa consistiu na preparação dos tijolos novos (mesma composição química dos tijolos post mortem) de maneira a avaliar seu comportamento em relação ao ataque por escória e/ou metal em ensaios termoquímicos e analisar os resultados obtidos com os tijolos \"Post - Mortem\". A terceira etapa foi baseada nos resultados obtidos das investigações das etapas anteriores, ao qual, foram propostos novos tijolos comerciais com diferentes formulações, em parceria com uma indústria brasileira de materiais refratários (Togni refratários), que atenda melhor as exigências das aciarias elétricas. Os resultados que foram apresentados por esta tese, comprovaram que os revestimentos próximos ao ideal, seria os refratários com matriz de cromo (amostra AC_1) e matriz de carbono (amostra AC_2). / Wear on linning refractory is the critical problems found in steelmaking environments, which limits process productivity due to the need for maintenance shutdowns in industrial equipments, in favor of replacing the refractory lining on wear regions. The objective of this work was to identify and characterize the wear mechanisms generated by the action of the metal/slag bath in the microstructure of refractory materials used as coating of steel pans of electric steelmaking, in order to prolong the campaign time of steel pans. This work was divided into three steps. The first step is called a \"Post-Mortem\" study, which consists of the sampling of the refractory bricks of the steel ladle, to which they were prepared for physicochemical and microstructural analyzes to identify the mechanisms of active wear. The second step consisted in the preparation of the new bricks in order to evaluate their behavior in relation to the slag attack in thermochemical tests and to analyze the results obtained with the \"Post - Mortem\" bricks. Based on the results of these initial investigations, new commercial bricks with different formulations were proposed, in partnership with a Brazilian refractory materials industry (Togni refractory), which better meets the requirements of electric steel mills. The results presented by this thesis are innovative and have characteristics in terms of technological contribution in the steel and refractory industries.
67

Rheological characterisation of nickel laterite slurry in processing environments

Fisher, Daniel Thomas January 2006 (has links)
With China’s continuing economic boom, the demand for nickel has seen unprecedented growth over the past 10 years. Most of the world’s nickel is present in nickel laterite deposits. These high volume, low grade deposits are now being exploited and processed. An understanding of nickel laterite rheology and the ability to obtain meaningful rheological data is essential to process intensification and stability. / The properties and physical characteristics of 8 industrial nickel laterite slurries as well as two alumina slurries were examined using various rheological techniques. The samples chosen covered a wide range of physical conditions such as differing pH, particle size distributions, solids densities and mineralogy as well as country and deposit of origin. The rheological parameters investigated were the yield stress and shear stress vs. shear rate of the particulate slurries. Considerable attention was focused on the techniques used in shear stress vs. shear rate characterisation, including capillary rheometry, smooth and roughened cup and bob rheometry and the vane in infinite medium technique. / This work confirmed the finding of previous works, showing nickel laterite slurry rheological behaviour ranging from time independent to thixotropic to rheopectic. It found the vane in infinite medium technique highly suitable for testing nickel laterites at process relevant yield stresses. This technique gave data that correlated well with vane yield stresses and capillary rheometry data. Cup and bob tests showed significant slip at lower shear rates. In a number of cases, the cup and bob techniques also showed erroneously high stresses at higher shear rates. / The vane yield stress was found to be a fast and accurate method for monitoring nickel laterite sample aging and the samples tested exhibited 100 Pa yield stresses at solids fractions ranging from 0.389 to 0.524. Blending of nickel laterites was found to be nonlinear, and confirmed that characterisation at various blend ratios is necessary if blending is to be utilised during production.
68

Solidification behaviour of titania slags

Coetzee, Colette. January 2003 (has links)
Thesis (M. Sc.)(Metallurgical Engineering)--University of Pretoria, 2003. / Summaries in Afrikaans and English. Includes bibliographical references. Available on the Internet via the World Wide Web.
69

Synthesis of AlON and MgAlON Ceramics and Their Chemical Corrosion Resistance

Wang, Xidong January 2001 (has links)
In view of the excellent mechanical, chemical and opticalproperties, AlON (Aluminum oxynitride) as well as MgAlON(Magnesium Aluminum oxynitride) have drawn the attention ofmaterials scientists in past decades. In this thesis,thermodynamic properties, synthesis and corrosion resistance tooxygen and slag of AlON and MgAlON ceramics have beeninvestigated. Gibbs energy of AlON and MgAlON with different compositionsand temperatures were estimatedby using thermodynamicquasi-parabola rule. Phase stability diagrams of Al-O-N andMg-Al-O-N systems at different conditions have been calculated.On the basis of thermodynamic analysis, AlON and MgAlONceramics were synthesized by hot-press sintering andcharacterized by XRD, TEM and HREM analyses. An X-raydiffraction standard file of MgAlON is suggested and sent toJCPDS. The density of AlON synthesized was 3.63g/cm3, about 97.8% of its theoretical density. Thedensity of MgAlON is 3.55 g/cm3. Fracture toughness of AlON and MgAlON is 3.96 and4.06 MPa.m1/2. Three-point bending strength of AlON and MgAlONare 248 and 268 MPa, respectively, at room temperature andkeeps very high until 1723K. However the strength drops 189 and202 MPa for AlON and MgAlON, respectively, at 1723K. Thefracture section of AlON and MgAlON were examined and found tobe a mixed fracture of intercrystalline and cleavage fracturefor AlON and a mixed intercrystalline and transcrystallinefracture for MgAlON. Oxidation experiments of AlON and MgAlON and a comparison ofthe oxidation behavior of AlON, MgAlON, O'SiAlON-ZrO2and NB-ZCM have been carried out. Undernon-isothermal oxidation conditions, oxidation of AlON exhibitstwo steps with a "S"-shaped curve due to the phasetransformation of oxidation product. As temperature increases,the oxidation product, γ -Al2O3formed at lower temperatures will transform intoα-Al2O3. Due to the differences in the molar volumesbetween α-Al2O3and γ -Al2O3, cracks are likely to be formed in the productlayer promoting further oxidation. MgAlON, O'SiAlON-ZrO2and NB-ZCM show only one step with paraboliccurves. Isothermal oxidation experiments of AlON, MgAlON,O'SiAlON-ZrO2and NB-ZCM have been carried out in thetemperature range of 1373-1773K. At lower temperatures, MgAlONshows the best resistance to oxidation. But at highertemperatures, such as 1773K, AlON shows the best resistance tooxidation. O'SiAlON-ZrO2shows very good oxidation resistance in the lowtemperature range up to 1673K. But, as the temperature goes upabove 1673K, there is liquid phase produced during theoxidation process. Gas bubbles are also formed in the productlayer causing the flaking-off of some parts of the productlayer. Therefore its oxidation rate increases greatly astemperature rises to 1673K. In the case of BN-ZCM ceramics, dueto the evaporation of B2O3, the oxidation resistance seems to be poorest. Thechemical reaction activation energies for the initial stage ofoxidation of AlON, MgAlON, O'SiAlON-ZrO2and BN-ZCM are 218, 330, 260 and 254 kJ/molerespectively. And the activation energies at the laterdiffusion controlling stages are 227, 573, 367 and 289 kJ/molefor AlON, MgAlON, O'SiAlON-ZrO2and BN-ZCM respectively. The roughness of the oxidation sample surfaces has beenmeasured by Atomic Force Microscope. As the temperatureincreases, the degrees of roughness of AlON and MgAlON surfacesincrease slightly due to the growth of crystal grain. Theroughness degree of BN-ZCM increases greatly because of theevaporation of B2O3. However the roughness of O'SiAlON-ZrO2decreases as the temperature increases from 1473Kto 1673K. The main reason is that the liquid phase (glass)produced during the oxidation process at high temperatures suchas 1673K and 1773K. The roughness degree of MgAlON, AlON,O'SiAlON-ZrO2and BN-ZCM are 234, 174, 75 and 63 nm respectivelyat 1473K, and 297, 284, 52 and 406 nm respectively at1673K. Experiments of corrosion of AlON by CaO-MgO-"FeO"-Al2O3-SiO2slags were conducted in the temperature range of1693-1753K under static conditions as well as under forcedconvection. XRD, SEM-EDS and TEM analyses on the corrodedsamples were carried out. The results showed that the diffusion was therate-controlling step in the initial stage of the corrosion.Thereafter, the slag formation (the product layer dissolvinginto the liquid slag) became more and more important. Thisaspect was further confirmed by fractal dimension analysis ofthe interface. The overall activation energy for the corrosionprocess with slag No.1 was evaluated to be 1002 kJ. Adding"FeO" to the slag greatly enhanced the corrosion rate probablydue to the reaction of the sample with "FeO". <b>Key words:</b>AlON, MgAlON, Thermodynamics, Synthesis,Oxidation, Slag corrosion
70

none

Huang, Chun-shyen 06 August 2007 (has links)
BOF slag is a co-product generated from Basic Oxygen steelmaking process with annual production of 1.3 million tons approx. Because of its unique physical and chemical properties, it was considered as waste in the past and dumped to the ocean. After research and development, the BOF slag was used as sea-shore embankment and landfill material. Then it was registered as a product and was further used as land filler of temporary roads and parking lots. For now, BOF slag can be used as engineering materials such as asphalt concrete aggregates and Controlled Low Strength Material. Advancing waste recycling to promote resources optimization is an essential factor to industrial sustainable development. It also meets the global trends of sustainable use of resources and sustainable development of economy and society. Investigating the process of BOF slag resourcilization, it is concluded that the center of the development frame of recycled products is waste resourcilization. The steps to completely solve pollution problems including: input of human and natural resources, basic research and development, and finally converting waste into products. Meanwhile, governmental regulations must not be violated. Relevant regulations, domestic and international experiences and practices, and market investigation must be considered to confirm market need and opportunities for development. After the above are finished, the work team can be formed to start research and development. The recycled product development process can be divided into 7 major stages, including basic properties analysis, selection of application direction, technological research and evaluation, economical feasibility analysis, trial production and market testing, certification and specification modification, commercialization and promotion.

Page generated in 0.044 seconds