Spelling suggestions: "subject:"sleep spindle"" "subject:"bleep spindle""
21 |
Implication de la connectivité anatomique dans les caractéristiques des fuseaux de sommeilGaudreault, Pierre-Olivier 02 1900 (has links)
No description available.
|
22 |
Neural correlates of human non-REM sleep oscillations. A multimodal functional neuroimaging approach. / Corrélats cérébraux des rythmes du sommeil lent chez l'homme. Etude en neuroimagerie fonctionnelle multimodale.Dang Vu, Thien Thanh 21 April 2008 (has links)
SUMMARY
Non Rapid Eye Movement (NREM) sleep in humans is defined by spontaneous neural activities organized by specific rhythms or oscillations. The aim of this thesis is to characterize, by means of neuroimaging techniques, the shaping of brain function by these physiological rhythms.
The studied oscillations are sleep spindles, delta waves and slow oscillation, representing the main identifiable neurophysiological events of human NREM sleep. Sleep spindles are a hallmark of light NREM sleep. They are commonly described on electroencephalographic (EEG) recordings as 11-15 Hz oscillations, lasting more than 0.5 sec and with a typical waxing-and-waning waveform. During deeper stages of NREM sleep, spindles are progressively replaced by a slow wave activity (SWA; 0.5-4 Hz), which encompasses delta waves (1-4 Hz) and slow oscillations (0.5-1 Hz).
In combination with EEG, we studied these rhythms using two different functional brain imaging techniques : positron emission tomography (PET) and functional magnetic resonance imaging (fMRI).
These studies originally contribute to the understanding of the generating mechanisms and functional roles of NREM sleep oscillations, which are a hallmark of sleep architecture in healthy humans.
Neural correlates of NREM sleep oscillations assessed by EEG / PET
In this section, we report the analyses of PET data devoted to the study of NREM sleep oscillations. We characterized the brain areas in which activity, measured in terms of regional cerebral blood flow (rCBF), was correlated with EEG spectral power in the spindle (11-15 Hz), delta waves (1-4 Hz) and slow oscillation (0.5-1 Hz) frequency bands, in 23 non-sleep-deprived young healthy volunteers.
EEG activity in the spindle frequency band was negatively correlated with rCBF in the thalamus. This result was in agreement with data suggesting the generation of spindles within cortico-thalamo-cortical loops (Steriade, 2006).
Spectral power in the delta band was negatively correlated with rCBF in the medial prefrontal cortex, striatum, insula, anterior cingulate cortex, precuneus and basal forebrain, which are structures potentially involved in the modulation of cortical delta waves (Dang-Vu et al., 2005b). The functional brain mapping of slow oscillations was highly similar to the one of delta waves, in keeping with the hypothesis that both types of oscillations share common physiological mechanisms.
These results consisted in negative correlations, which means that the cerebral blood flow in these areas was lower when the power in the corresponding frequency band was higher. The different rhythms of NREM sleep are synchronized by the slow oscillation, which alternates a hyperpolarization phase during which cortical neurons remain silent, and a depolarization phase associated with important neuronal firing. The prominent effect of hyperpolarization phases could account for the decrease in blood flow found in PET studies. Indeed, PET has a limited temporal resolution, around one minute, and therefore averages brain activity over relatively long periods, during which hyperpolarization phases predominate. Thus PET imaging does not allow to directly study brief events, lasting one second or so, such as NREM sleep oscillations. Besides, the spectral power values used in PET studies are just an indirect reflection of the appearance of these rhythms during sleep. These considerations justify the use of fMRI because, together with improved spatial resolution, its temporal resolution around one second allows to assess brain responses associated to the occurrence of NREM sleep oscillations, taken as identifiable events.
Neural correlates of NREM sleep oscillations assessed by EEG / fMRI
The largest section of the thesis is devoted to the use of fMRI in the study of NREM sleep oscillations. We characterized the brain areas in which activity, measured in terms of blood oxygen level dependent (BOLD) signal, was correlated with the occurrence of NREM sleep oscillations. Compared to EEG with PET, EEG recording with simultaneous fMRI was technically much more challenging. In particular, the analysis of EEG data acquired simultaneously with fMRI required a complex signal processing in order to remove all artefacts induced during the scanning procedure. After clean EEG data had been obtained, automatic detection of spindles (Molle et al., 2002), delta waves and slow oscillations (Massimini et al., 2004) was performed according to published criteria, and provided the series of events to be used as regressors in the statistical analysis of fMRI data. The latter assessed the main effects of spindles, delta waves and slow oscillations on BOLD signal changes across the 14 non-sleep-deprived young healthy volunteers selected for this study.
Spindles were analysed considering 2 potential subtypes. Indeed, in humans, while most spindles are recorded in central and parietal regions and display a frequency around 14 Hz (fast spindles), others are prominent on frontal derivations with a frequency around 12 Hz (slow spindles). Previous data also show differences between both subtypes in their modulation by age, circadian and homeostatic factors, menstrual cycle, pregnancy and drugs (De Gennaro and Ferrara, 2003). However, no clear evidence of a distinct neurobiological basis for these two subtypes of spindles has been demonstrated so far. After automatic detection of spindles and their differentiation as fast and slow, we showed that the two subtypes were associated with activation of partially distinct thalamo-cortical networks. These data further support the existence of 2 subtypes of sleep spindles modulated by segregated neural networks (Schabus et al., 2007).
Slow oscillation has initially been described at the cellular level in animals as an oscillation <1 Hz of membrane potential, alternating a hyperpolarization phase (down) during which cortical neurons are silent and a depolarization phase (up) associated with intense neuronal firing (Steriade, 2006). At the macroscopic level, this slow rhythm is found on human EEG recordings as high amplitude slow waves, defined by a peak-to-peak amplitude of more than 140 µV (Massimini et al., 2004). The slow oscillation also synchronizes other NREM sleep rhythms such as spindles (Molle et al., 2002) and delta waves (defined here as waves of lower peak-to-peak amplitude : between 75 and 140 µV). The organization of NREM sleep by the slow oscillation suggests that NREM sleep should be characterized by increased brain activities associated with the up state of slow oscillation. Indeed, we observed significant BOLD signal changes in relation to both slow waves and delta waves in specific brain areas including inferior and medial frontal gyrus, parahippocampal gyrus, precuneus, posterior cingulate cortex, ponto-mesencephalic tegmentum and cerebellum. All these responses consisted in brain activity increases. These results stand in sharp contrast with earlier sleep studies, in particular PET studies, reporting decreases in brain activity during NREM sleep. Here we showed that NREM sleep cannot be reduced to a state of global and regional brain activity decrease, but is actually an active state during which phasic increases in brain activity are synchronized to the slow oscillation.
We then compared brain responses to delta and slow waves respectively and found no significant difference. In agreement with our PET data, this result suggests that slow waves and delta waves share common neurobiological mechanisms. However, when effects of slow and delta waves were tested separately, we observed that slow waves were specifically associated with activation of brainstem and mesio-temporal areas, while delta waves were associated with activation of inferior and medial frontal areas. This result is important in regard to the potential role of slow oscillation in memory consolidation during sleep (Marshall et al., 2006). Indeed, the preferential activation of mesio-temporal areas with high amplitude slow waves suggests that the amplitude of the wave is a crucial factor in the recruitment during sleep of brain structures involved in the processing of memory traces.
RESUME
Le sommeil lent de lhomme est défini par la présence dactivités neuronales spontanées, organisées sous forme de rythmes ou oscillations spécifiques. Lobjectif des travaux réalisés dans le cadre de cette thèse est de caractériser, par des méthodes de neuroimagerie, le fonctionnement cérébral au cours de ces rythmes physiologiques.
Les oscillations que nous avons étudiées sont les fuseaux du sommeil, les ondes delta et les oscillations lentes, représentant les principales activités neurophysiologiques identifiables chez lhomme au cours du sommeil lent. Les fuseaux du sommeil constituent un élément essentiel du sommeil lent léger. Ils sont communément décrits sur les enregistrements électroencéphalographiques (EEG) comme des oscillations de fréquence comprise entre 11 et 15 Hz, dune durée dau moins 0,5 sec, et de morphologie caractéristique daugmentation puis de diminution damplitude. Au cours des stades plus profonds de sommeil lent, les fuseaux sont en grande partie remplacés par une activité donde lente (SWA; 0,5-4 Hz) qui recouvre les ondes delta (1-4 Hz) et les oscillations lentes (0,5-1 Hz).
En combinaison à lEEG, nous avons utilisé deux techniques dimagerie fonctionnelle différentes pour étudier ces rythmes: la tomographie par émission de positons (PET) et limagerie en résonance magnétique fonctionnelle (fMRI). Ces études apportent une contribution originale à notre compréhension du sommeil lent chez lhomme sain, par lexploration des mécanismes générationnels de ces oscillations, piliers de larchitecture du sommeil.
Corrélats cérébraux des rythmes du sommeil lent en EEG / PET
Dans cette section, nous décrivons lutilisation de la PET dans létude des rythmes du sommeil lent. Nous avons caractérisé les régions cérébrales dans lesquelles lactivité, mesurée en terme de débit sanguin cérébral régional (rCBF), était corrélée à la puissance spectrale EEG dans la bande de fréquence des fuseaux (11-15 Hz), des ondes delta (1-4 Hz) et des oscillations lentes (0.5-1 Hz), chez 23 jeunes volontaires sains et non privés de sommeil.
Lactivité EEG dans la bande des fuseaux était corrélée négativement avec le rCBF dans le thalamus. Ce résultat est en accord avec les données suggérant la genèse des fuseaux par des boucles dinteraction cortico-thalamo-corticale (Steriade, 2006).
La puissance spectrale dans la bande delta était négativement corrélée avec le rCBF au niveau du cortex préfrontal médial, du striatum, de linsula, du cortex cingulaire antérieur, du précuneus et du télencéphale basal, régions potentiellement impliquées dans la modulation des ondes delta corticales (Dang-Vu et al., 2005b). La carte des oscillations lentes était superposable à celle des ondes delta, ce qui suggère que ces deux types doscillations relèvent chez lhomme de mécanismes physiologiques communs.
Ces résultats démontraient donc des corrélations négatives, ce qui signifie que le débit sanguin cérébral dans ces régions était dautant plus faible que la puissance dans la bande de fréquence correspondante était élevée. Linterprétation de ce phénomène doit intégrer le fait que les différents rythmes du sommeil lent sont sculptés par loscillation lente, laquelle alterne une phase dhyperpolarisation au cours de laquelle les neurones corticaux sont silencieux, et une phase de dépolarisation au cours de laquelle ils déchargent en bouffées. Leffet prépondérant des phases dhyperpolarisation pourrait expliquer la baisse de débit cérébral démontrée en PET. En effet, cette dernière présente une résolution temporelle limitée, de lordre de la minute, ce qui a pour effet dintégrer lactivité cérébrale sur des périodes de temps relativement longues, au cours desquelles les phases dhyperpolarisation corticale prédominent. Limagerie en PET ne permet pas donc pas détudier directement des événements brefs de lordre de la seconde, tels que les oscillations du sommeil lent. En outre, les valeurs de puissance spectrale utilisées pour caractériser ces rythmes en PET ne reflètent quindirectement leur survenue au cours du sommeil. Ces considérations justifient le recours à limagerie en fMRI, dont la résolution temporelle de lordre de la seconde permet dévaluer les réponses cérébrales associées à la survenue des oscillations du sommeil lent, considérées cette fois comme des événements identifiables.
Corrélats cérébraux des rythmes du sommeil lent en EEG / fMRI
Dans cette partie, la plus importante, nous décrivons lanalyse en fMRI des rythmes du sommeil lent. Nous avons caractérisé les régions cérébrales dont l'activité, mesurée par le signal BOLD, était corrélée à la survenue des oscillations du sommeil lent. Par rapport à la situation rencontrée en PET, lenregistrement des données EEG nécessaire à la détection des rythmes du sommeil lent, simultanément à lacquisition fMRI, a posé des difficultés techniques considérablement plus grandes. En particulier, linterprétation de lEEG dans ces conditions a nécessité un traitement précis du signal afin den éliminer les éléments artéfactuels qui le contaminent. Ce nest quaprès ce processus que la détection automatique des fuseaux (Molle et al., 2002), des ondes delta et des oscillations lentes (Massimini et al., 2004) selon des critères publiés a pu seffectuer, permettant dobtenir les séries dévénements qui furent entrés comme régresseurs dans lanalyse statistique des données fMRI. Cette dernière évalue leffet principal des fuseaux, ondes delta et oscillations lentes sur les variations du signal BOLD chez lensemble des 14 jeunes volontaires sains et non privés de sommeil sélectionnés pour létude.
En ce qui concerne les fuseaux, ils furent subdivisés en 2 sous-types. Chez lhomme en effet, alors que la grande majorité des fuseaux sont enregistrés dans les régions centrales et pariétales, avec une fréquence denviron 14 Hz (fuseaux rapides), dautres fuseaux dits lents (environ 12 Hz) prédominent dans les régions frontales. Des données antérieures rapportent également des différences entre ces deux sous-types en ce qui concerne leur modulation par des paramètres comme lâge, les facteurs circadiens et homéostatiques, la phase du cycle menstruel, la grossesse et certains agents pharmacologiques (De Gennaro and Ferrara, 2003). Cependant, aucune description formelle dun substrat biologique distinct navait encore été établie pour ces 2 sous-types de fuseaux. Après détection automatique des fuseaux et leur ségrégation en fuseaux rapides et lents, nous avons pu démontrer que les 2 sous-types de fuseaux étaient associés à des activations dans des réseaux thalamo-corticaux partiellement distincts. Ces données apportent donc des arguments pour établir lexistence de 2 sous-types biologiquement différenciés de fuseaux du sommeil (Schabus et al., 2007).
Loscillation lente du sommeil lent a été décrite initialement au niveau cellulaire chez lanimal comme une oscillation de fréquence <1Hz et qui alterne une phase dhyperpolarisation (ou down), au cours de laquelle les neurones corticaux sont silencieux, et une phase de dépolarisation (ou up) qui correspond à une période de décharges neuronales intenses (Steriade, 2006). Chez lhomme, cette oscillation lente est également retrouvée sur les enregistrements EEG de surface sous forme dondes lentes de haute amplitude, définies par une amplitude pic-à-pic de plus de 140 µV (Massimini et al., 2004). Loscillation lente synchronise aussi dautres rythmes du sommeil lent tels les fuseaux (Molle et al., 2002) et les ondes delta (définies ici par des ondes de plus basse amplitude pic-à-pic : entre 75 et 140 µV). Lorganisation du sommeil lent par ces oscillations lentes suggère que le sommeil lent devrait être marqué par des activations cérébrales survenant en synchronie avec les phases up des oscillations lentes. De fait, nous avons observé des variations significatives de signal BOLD en association avec les ondes lentes et delta dans des régions cérébrales spécifiques incluant le gyrus frontal inférieur et médial, le gyrus parahippocampique, le precuneus, le cortex cingulaire postérieur, le tegmentum ponto-mésencéphalique et le cervelet. Ces variations étaient positives dans toutes les régions mises en évidence, ce qui traduit une augmentation dactivité. Ces résultats sont originaux en ce quils suggèrent que le sommeil lent, contrairement à ce qui était conclu des précédentes études du sommeil chez lhomme (particulièrement en PET), ne se réduit pas à une hypoactivation cérébrale globale et régionale. Au contraire, nos données montrent que le sommeil lent saccompagne dune activation cérébrale phasique rythmée par la phase de dépolarisation des oscillations lentes.
Nous avons ensuite comparé les réponses cérébrales aux ondes delta et celles aux ondes lentes. Aucune région cérébrale ne présentait dactivité significativement différente en fonction des 2 types dondes. En accord avec nos données PET, ce résultat suggère quil ny a pas de différence formelle sur le plan des mécanismes neurobiologiques entre ondes lentes et ondes delta. Toutefois, lorsque les effets des ondes lentes et delta furent testés séparément, nous avons observé que les ondes lentes activaient spécifiquement le tronc cérébral et le cortex mésio-temporal alors que les ondes delta activaient les aires frontales inférieure et médiale. Cet résultat est important si lon considère en particulier le rôle potentiel des oscillations lentes dans la consolidation des traces mnésiques au cours du sommeil (Marshall et al., 2006). Lactivation préférentielle des aires mésio-temporales avec les ondes lentes de haute amplitude suggère en effet que lamplitude de londe est un paramètre déterminant dans le recrutement au cours du sommeil de structures cérébrales impliquées dans le traitement des traces mnésiques.
|
Page generated in 0.0551 seconds