• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Windowing effects and adaptive change point detection of dynamic functional connectivity in the brain

Shakil, Sadia 27 May 2016 (has links)
Evidence of networks in the resting-brain reflecting the spontaneous brain activity is perhaps the most significant discovery to understand intrinsic brain functionality. Moreover, subsequent detection of dynamics in these networks can be milestone in differentiating the normal and disordered brain functions. However, capturing the correct dynamics is a challenging task since no ground truths' are present for comparison of the results. The change points of these networks can be different for different subjects even during normal brain functions. Even for the same subject and session, dynamics can be different at the start and end of the session based on the fatigue level of the subject scanned. Despite the absence of ground truths, studies have analyzed these dynamics using the existing methods and some of them have developed new algorithms too. One of the most commonly used method for this purpose is sliding window correlation. However, the result of the sliding window correlation is dependent on many parameters and without the ground truth there is no way of validating the results. In addition, most of the new algorithms are complicated, computationally expensive, and/or focus on just one aspect on these dynamics. This study applies the algorithms and concepts from signal processing, image processing, video processing, information theory, and machine learning to analyze the results of the sliding window correlation and develops a novel algorithm to detect change points of these networks adaptively. The findings in this study are divided into three parts: 1) Analyzing the extent of variability in well-defined networks of rodents and humans with sliding window correlation applying concepts from information theory and machine learning domains. 2) Analyzing the performance of sliding window correlation using simulated networks as ground truths for best parameters’ selection, and exploring its dependence on multiple frequency components of the correlating signals by processing the signals in time and Fourier domains. 3) Development of a novel algorithm based on image similarity measures from image and video processing that maybe employed to identify change points of these networks adaptively.
2

Examining the relationship between BOLD fMRI and infraslow EEG signals in the resting human brain

Grooms, Joshua Koehler 21 September 2015 (has links)
Resting state functional magnetic resonance imaging (fMRI) is currently at the forefront of research on cognition and the brain’s large-scale organization. Patterns of hemodynamic activity that it records have been strongly linked to certain behaviors and cognitive pathologies. These signals are widely assumed to reflect local neuronal activity but our understanding of the exact relationship between them remains incomplete. Researchers often address this using multimodal approaches, pairing fMRI signals with known measures of neuronal activity such as electroencephalography (EEG). It has long been thought that infraslow (< 0.1 Hz) fMRI signals, which have become so important to the study of brain function, might have a direct electrophysiological counterpart. If true, EEG could be positioned as a low-cost alternative to fMRI when fMRI is impractical and therefore could also become much more influential in the study of functional brain networks. Previous works have produced indirect support for the fMRI-EEG relationship, but until recently the hypothesized link between them had not been tested in resting humans. The objective of this study was to investigate and characterize their relationship by simultaneously recording infraslow fMRI and EEG signals in resting human adults. We present evidence strongly supporting their link by demonstrating significant stationary and dynamic correlations between the two signal types. Moreover, functional brain networks appear to be a fundamental unit of this coupling. We conclude that infraslow electrophysiology is likely playing an important role in the dynamic configuration of the resting state brain networks that are well-known to fMRI research. Our results provide new insights into the neuronal underpinnings of hemodynamic activity and a foundational point on which the use of infraslow EEG in functional connectivity studies can be based.

Page generated in 0.1022 seconds