• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Consideration of Deformation of TiN Thin Films with Preferred Orientation Prepared by Ion-Beam-Assisted Deposition

HAYASHI, Toshiyuki, MATSUMURO, Akihito, WATANABE, Tomohiko, MORI, Toshihiko, TAKAHASHI, Yutaka, YAMAGUCHI, Katsumi 01 1900 (has links)
No description available.
2

Dynamics Of Stick-Slip : Peeling Of An Adhesive Tape And Predictability In Power Law Systems

De, Rumi 11 1900 (has links) (PDF)
No description available.
3

Sub-Grain Characterization of Slip Activity in BCC Tantalum

Russell, Tristan Kirby 07 April 2022 (has links)
BCC metals are commonly used throughout the world and understanding their deformation behavior, especially at the sub-grain level, is essential for their continued use in technological advancements. Correctly and confidently characterizing the active slip systems in BCC materials has been a difficult task throughout past research. The research described in this thesis utilizes high resolution digital image correlation (HRDIC) and relative displacement ratio (RDR) analysis to accurately characterize active slip systems in large grained BCC tantalum and provides new insights into dislocation nucleation sites, relative CRSS values for {110} and {112} slip systems, the correlation between GB transmission factors and strain gradients, the relative length of NBGZs, and slip transmission. A 99.99% pure tantalum oligo sample was sputtered with gold and remodeled to provide high resolution data points to be used in HRDIC. The high resolution of the gold remodeled samples combined with a RDR analysis made it possible to confidently identify active slip systems during tensile deformation at room temperature. One of the observations from this analysis was the discrepancy between the observed active slip systems and those predicted from a simple single-CRSS Schmid's Law. By considering the active systems observed in grains with a range of orientation, it was concluded that the {112} slip systems have a higher CRSS than the {110} by 6.7%. Independent CPFE simulations and experiments on single crystal samples of the same material, agreed with our findings establishing a range of increased CRSS for {112} of 3.9%-7.1%. These conclusions are compared with the small number of available estimates of the CRSS ratio, and lie in between the value of equal CRSS used by most modelers, and experimental estimates of 15-25% higher for {112}. The identified active slip systems were also used in the Luster and Morris equation to calculate each GBs transmissivity factor - an estimate of strain incompatibility between neighboring grains. Results indicate that there is an inverse correlation between GB transmissivity and strain gradient slope, as well as a positive correlation between GB transmissivity and slip trace reorientation for some GBs. Only one instance of slip transmission was observed from the 24 GBs analyzed, suggesting it is an uncommon occurrence in BCC tantalum. An analysis of the length of the NBGZ in relation to slip and strain gradients was compared to previous studies and suggests the relative and absolute length of the NBGZ changes with grain size, at least for large length scales. Strain gradients for each side of the GB were measured and results indicated steep negative strain gradient slopes that suggest dislocation nucleation in the GBs and propagation towards the interior of the grain. When compared against the transmissivity factor, an inverse relationship was found to exist between strain gradients and high transmissivity factors.
4

Deformation Behaviour, Microstructure and Texture Evolution of CP Ti Deformed at Elevated Temperatures

Zeng, Zhipeng January 2009 (has links)
In the present work, deformation behavior, texture and microstructure evolution of commercially pure titanium (CP Ti) are investigated by electron backscattered diffraction (EBSD) after compression tests at elevated temperatures. By analysing work hardening rate vs. flow stress, the deformation behaviour can be divided into three groups, viz. three-stage work hardening, two-stage work hardening and flow softening. A new deformation condition map is presented, dividing the deformation behavior of CP Ti into three distinct zones which can be separated by two distinct values of the Zener-Hollomon parameter. The deformed microstructures reveal that dynamic recovery is the dominant deformation mechanism for CP Ti during hot working. It is the first time that the Schmid factor and pole figures are used to analyse how the individual slip systems activate and how their activities evolve under various deformation conditions. Two constitutive equations are proposed in this work, one is for single peak dynamic recrystallization (DRX), the other is specially for CP Ti deformed during hot working. After the hot compression tests, some stress-strain curves show a single peak, leading to the motivation of setting up a DRX model. However, the examinations of EBSD maps and metallography evidently show that the deformation mechanism is dynamic recovery rather than DRX. Then, the second model is set up. The influence of the deformation conditions on grain size, texture and deformation twinning is systematically investigated. The results show that {10-12} twinning only occurs at the early stage of deformation. As the strain increases, the {10-12} twinning is suppressed while {10- 11} twinning appears. Three peaks are found in the misorientation frequency-distribution corresponding to basal fiber texture, {10-11} and {10-12} twinning, respectively. A logZ-value of 13 is found to be critical for both the onset of {10-11} compressive twinning and the break point for the subgrain size. The presence of {10-11} twinning is the key factor for effectively reducing the deformed grain size. The percentage of low angle grain boundaries decreases with increasing Z-parameter, falling into a region separated by two parallel lines with a common slope and 10% displacement. After deformation, three texture components can be found, one close to the compression direction, CD, one 10~30° to CD and another 45° to CD. / QC 20100819

Page generated in 0.242 seconds