• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical Simulation of Hydrodynamic Bearings with Engineered Slip/No-Slip Surfaces

Fortier, Alicia Elena 30 July 2004 (has links)
The no-slip boundary condition is the foundation of traditional lubrication theory. It says that fluid adjacent to a solid boundary has zero velocity relative to that solid surface. For most practical applications the no-slip boundary condition is a good model for predicting fluid behavior. However, recent experimental research has found that for special engineered surfaces the no-slip boundary condition is not applicable. Measured velocity profiles suggest that slip is occurring at the interface. In the present study, it is found that judicious application of slip to a bearings surface can lead to improved bearing performance. The focus of this thesis is to analyze the effect an engineered slip/no-slip surface could have on hydrodynamic bearing performance. A heterogeneous pattern is applied to the bearing surface in which slip occurs in certain regions and is absent in others. Analysis is performed numerically for both plane pad slider bearings and journal bearings. The performance parameters evaluated for the bearings are load carrying capacity, side leakage rate and friction force. Fluid slip is assumed to occur according to the Navier relation and the effect of a critical value for slip onset is considered.
2

MODELING PARTICLE FILTRATION AND CAKING IN FIBROUS FILTER MEDIA

Hosseini, Seyed Alireza 22 July 2011 (has links)
This study is aimed at developing modeling methodologies for simulating the flow of air and aerosol particles through fibrous filter media made up of micro- or nano-fibers. The study also deals with modeling particle deposition (due to Brownian diffusion, interception, and inertial impaction) and particle cake formation, on or inside fibrous filters. By computing the air flow field and the trajectory of airborne particles in 3-D virtual geometries that resemble the internal microstructure of fibrous filter media, pressure drop and collection efficiency of micro- or nano-fiber filters are simulated and compared with the available experimental studies. It was demonstrated that the simulations conducted in 3-D disordered fibrous domains, unlike previously reported 2-D cell-model simulations, do not need any empirical correction factors to closely predict experimental observations. This study also reports on the importance of fibers’ cross-sectional shape for filters operating in slip (nano-fiber filters) and no-slip (micro-fiber filters) flow regimes. In particular, it was found that the more streamlined the fiber geometry, the lower the fiber drag caused by a nanofiber relative to that generated by its micron-sized counterpart. This work also presents a methodology for simulating pressure drop and collection efficiency of a filter medium during instantaneous particle loading using the Fluent CFD code, enhanced by using a series of in-house subroutines. These subroutines are developed to allow one to track particles of different sizes, and simulate the formation of 2-D and 3-D dendrite particle deposits in the presence of aerodynamic slip on the surface of the fibers. The deposition of particles on a fiber and the previously deposited particles is made possible by developing additional subroutines, which mark the cells located at the deposition sites and modify their properties to so that they resemble solid or porous particles. Our unsteady-state simulations, in qualitative agreement with the experimental observations reported in the literature, predict the rate of increase of pressure drop and collection efficiency of a filter medium as a function of the mass of the loaded particles.
3

Fast Boundary Element Method Solutions For Three Dimensional Large Scale Problems

Ding, Jian 18 January 2005 (has links)
Efficiency is one of the key issues in numerical simulation of large-scale problems with complex 3-D geometry. Traditional domain based methods, such as finite element methods, may not be suitable for these problems due to, for example, the complexity of mesh generation. The Boundary Element Method (BEM), based on boundary integral formulations (BIE), offers one possible solution to this issue by discretizing only the surface of the domain. However, to date, successful applications of the BEM are mostly limited to linear and continuum problems. The challenges in the extension of the BEM to nonlinear problems or problems with non-continuum boundary conditions (BC) include, but are not limited to, the lack of appropriate BIE and the difficulties in the treatment of the volume integrals that result from the nonlinear terms. In this thesis work, new approaches and techniques based on the BEM have been developed for 3-D nonlinear problems and Stokes problems with slip BC. For nonlinear problems, a major difficulty in applying the BEM is the treatment of the volume integrals in the BIE. An efficient approach, based on the precorrected-FFT technique, is developed to evaluate the volume integrals. In this approach, the 3-D uniform grid constructed initially to accelerate surface integration is used as the baseline mesh to evaluate volume integrals. The cubes enclosing part of the boundary are partitioned using surface panels. No volume discretization of the interior cubes is necessary. This grid is also used to accelerate volume integration. Based on this approach, accelerated BEM solvers for non-homogeneous and nonlinear problems are developed and tested. Good agreement is achieved between simulation results and analytical results. Qualitative comparison is made with current approaches. Stokes problems with slip BC are of particular importance in micro gas flows such as those encountered in MEMS devices. An efficient approach based on the BEM combined with the precorrected-FFT technique has been proposed and various techniques have been developed to solve these problems. As the applications of the developed method, drag forces on oscillating objects immersed in an unbounded slip flow are calculated and validated with either analytic solutions or experimental results.
4

Lubrication Forces in Polydimethylsiloxane (PDMS) Melts

Chatchaidech, Ratthaporn 04 August 2011 (has links)
The flow properties of polydimethylsiloxane (PDMS) melts at room temperature were studied by measurement of lubrication forces using an Atomic Force Microscopy (AFM) colloidal force probe. A glass probe was driven toward a glass plate at piezo drive rates in the range of 12 – 120 μm/s, which produced shear rates up to ~10⁴ s⁻¹. The forces on the probe and the separation from the plate were measured. Two hypotheses were examined: (1) when a hydrophilic glass is immersed in a flow of polymer melt, does a thin layer of water form at the glass surface to lubricate the flow of polymer and (2) when a polymer melt is subject under a shear stress, do molecules within the melt spatially redistribute to form a lubrication layer of smaller molecules at the solid surface to enhance the flow? To examine the effect of a water lubrication layer, forces were compared in the presence and the absence of a thin water layer. The presence of the water layer was controlled by hydrophobization of the solid. In the second part, the possibility of forming a lubrication layer during shear was examined. Three polymer melts were compared: octamethyltrisiloxane (OMTS, n = 3), PDMS (n <sub>avg</sub> = 322), and a mixture of 70 weight% PDMS and 30 weight% OMTS. We examined whether the spatial variation in the composition of the polymer melt would occur to relieve the shear stress. The prediction was that the trimer (OMTS) would become concentrated in the high shear stress region in the thin film, thereby decreasing the viscosity in that region, and mitigating the shear stress. / Master of Science
5

Analyse d'un problème d'interaction fluide-structure avec des conditions aux limites de type frottement à l'interface / Analysis of a fluid-structure interaction problem with friction type boundary conditions

Ayed, Hela 16 May 2017 (has links)
Cette thèse est consacrée à l'analyse mathématique et numérique d'un problème d'interaction fluide-structure stationnaire, couplant un fluide newtonien, visqueux et incompressible, modélisé par les équations de Stokes 2D et une structure déformable, décrite par les équations d'une poutre 1D. Le fluide et la structure sont couplés via une condition aux limites de type frottement à l'interface.Dans l'étude théorique, nous montrons un résultat d'existence et unicité de solutions faibles, dans le cadre de petits déplacements, du problème de couplage fluide structure avec une condition de glissement de type Tresca en utilisant le théorème de point fixe de Schauder.Dans l'analyse numérique, nous étudions d'abord, l'approximation du problème de Stokes avec la condition de Tresca par une méthode d'éléments finis mixtes à quatre champs. Nous montrons ensuite une estimation d'erreur a priori optimale pour des données régulières et nous réalisons des tests numériques. Enfin, nous présentons un algorithme de point fixe pour la simulation numérique du problème couplé avec des conditions aux limites non linéaires. / This PHD thesis is devoted to the theoretical and numerical analysis of a stationary fluid-structure interaction problem between an incompressible viscous Newtonian fluid, modeled by the 2D Stokes equations, and a deformable structure modeled by the 1D beam equations.The fluid and structure are coupled via a friction boundary condition at the fluid-structure interface.In the theoretical study, we prove the existence of a unique weak solution, under small displacements, of the fluid-structure interaction problem under a slip boundary condition of friction type (SBCF) by using Schauder fixed point theorem.In the numerical analysis, we first study a mixed finite element approximation of the Stokes equations under SBCF.We also prove an optimal a priori error estimate for regular data and we provide numerical examples.Finally, we present a fixed point algorithm for numerical simulation of the coupled problem under nonlinear boundary conditions.

Page generated in 0.1165 seconds