• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical Simulation of Shale Gas Production with Thermodynamic Calculations Incorporated

Urozayev, Dias 06 1900 (has links)
In today’s energy sector, it has been observed a revolutionary increase in shale gas recovery induced by reservoir fracking. So-called unconventional reservoirs became profitable after introducing a well stimulation technique. Some of the analysts expect that shale gas is going to expand worldwide energy supply. However, there is still a lack of an efficient as well as accurate modeling techniques, which can provide a good recovery and production estimates. Gas transports in shale reservoir is a complex process, consisting of slippage effect, gas diffusion along the wall, viscous flow due to the pressure gradient. Conventional industrial simulators are unable to model the flow as the flow doesn’t follow Darcy’s formulation. It is significant to build a unified model considering all given mechanisms for shale reservoir production study and analyze the importance of each mechanism in varied conditions. In this work, a unified mathematical model is proposed for shale gas reservoirs. The proposed model was build based on the dual porosity continuum media model; mass conservation equations for both matrix and fracture systems were build using the dusty gas model. In the matrix, gas desorption, Knudsen diffusion and viscous flow were taken into account. The model was also developed by implementing thermodynamic calculations to correct for the gas compressibility, or to obtain accurate treatment of the multicomponent gas. Previously, the model was built on the idealization of the gas, considering every molecule identical without any interaction. Moreover, the compositional variety of shale gas requires to consider impurities in the gas due to very high variety. Peng-Robinson equation of state was used to com- pute and correct for the gas density to pressure relation by solving the cubic equation to improve the model. The results show that considering the compressibility of the gas will noticeably increase gas production under given reservoir conditions and slow down the production decline curve. Therefore, for a more accurate prediction of shale gas production, it is crucial to consider compressibility behavior of the gas.
2

In-mold coating of thermoplastic and composite parts: microfluidics and rheology

Aramphongphun, Chuckaphun 13 March 2006 (has links)
No description available.
3

Measurement and Control of Slip-Flow Boundary Conditions at Solid-Gas Interfaces

Seo, Dongjin 30 October 2014 (has links)
This thesis describes measurements of the gas-solid flow boundary condition at moderate Knudsen number, i.e., where the dimensions of the flow are similar to the mean free path, and thus partial slip is expected. This regime has become more important with increased focus on nano-scale devices, but there is currently no consensus on how the slip length should vary for different solids and gases, or whether it can be controlled. In this thesis, I describe unambiguous measurements showing that partial slip occurs, that the slip length depends both on gas and solid, and that the slip length can be altered in situ. The slip length is determined from analysis of the vibration of a small sphere adjacent to a solid. I also describe applications of these findings both to the separation of gases, and to inhalants. The effect of water films, gas species, organic films, and electric fields on gas flow was studied. Water films had a large, but complex effect. On bare hydrophobilic glass, the tangential momentum accommodation coefficient (TMAC) for nitrogen on hydroxyl-terminated silica changed from 0.25 to 0.88 when the humidity changed from 0 to 98 %. On hydrophobized glass, TMAC changed from 0.20 to 0.56 in the same range. The effect of the gas on TMAC was measured for five different gases (helium, nitrogen, argon, carbon dioxide, hexafluoride sulfur) on octadecyltrichlorosilane-coated glass surfaces. A lower TMAC occurred for greater molar mass, and this trend was explained using a simple model representing both the gas and the monolayer by spheres. The existence of this gas-dependent difference in TMAC suggests that gases can be separated based on their collisions with surfaces. Methods for controlling the flow boundary condition were also developed by adsorbing monolayers on the solid, and altering the monolayers in situ. Both temperature and electric fields altered the boundary condition, and these changes were attributed to changes in the surface roughness. The effect of roughness was modeled with grooved surfaces. Possible applications of this effect of roughness include changing the flow of aerosol droplets for deeper delivery of therapeutic drugs into the lung. / Ph. D.
4

Melt flow singularity in linear polyethylene : influence of molar mass, molar mass distribution and carbon-based fillers

Xu, Han January 2010 (has links)
In the recent past it has been found that a considerable pressure drop occurred during the extrusion of linear polyethylene in the course of capillary flow. The pressure drop resides within a narrow temperature window of one to two degrees Celsius. In this research the hydrodynamic condition and molecular origin of the extrusion window of linear polymer were investigated further. The advantage of the extrusion window, viz. smooth extrudate with less die swell ratio attained at low extrusion pressure and temperature, has potential in industrial applications. However, the extrusion window, corresponding to linear polyethylene (PE) with relatively low polydispersity (<7), has a narrow window temperature interval, circa 1~2°C, thus it could not be applied to industrial scale processing at the industrial scale. To have a fundamental insight and make the process industrially viable, research in this thesis was devoted to broaden the extrusion window to tolerate the thermal fluctuations in conventional processing. To achieve this goal molecular weight dependence of window temperature and flow criticalities is revealed. The hydrodynamic conditions of the extrusion window observed in a rate-controlled rheometer and stick-slip flow studied in a stress-controlled rheometer could be traced back to the same origin, viz. slip flow arises due to the disentanglement of adsorbed chains on capillary wall from free chains in the bulk. Secondly, a dual window effect was uncovered in the course of capillary flow of a bimodal PE, which is consistent with the window temperature dependence on molecular weight. Moreover, it was found that flow induced orientation within the window effect is even less than that observed in steady state flow at a relatively low shear rate. This implies that in the window region only relaxed free chains are extruded through the capillary die and most of the adsorbed chains, which could be disengaged from the entangled melt, remain sticking to the inner capillary wall. This observation is consistent with the hydrodynamic origin of high-surface-energy-die slip flow. Finally, a unimodal linear PE with extremely broad molecular weight distribution, i.e. polydispersity (PDI) is 27, showed a broad window effect, circa 8°C, at an appropriate apparent shear rate. The molecular origin of such a broad window effect is due to its broad molecular weight distribution. These results have further implications for energy efficient processing.
5

Characterization of Superhydrophobic Surfaces Fabricated Using AC-Electrospinning and Random Particle Deposition

Samaha, Mohamed, Jr. 07 May 2012 (has links)
Surfaces with static contact angle greater than 150 degrees are typically classified as superhydrophobic. Such coatings have been inspired by the lotus leaf. As water flows over a superhydrophobic surface, "slip effect" is produced resulting in a reduction in the skin-friction drag exerted on the surface. Slip flow is caused by the entrapment of a layer of air between water and the surface. Superhydrophobicity could be utilized to design surfaces for applications such as energy conservation, noise reduction, laminar-to-turbulent-transition delay, and mixing enhancement. A popular method of manufacturing a superhydrophobic surface is microfabrication in which well-designed microgrooves and/or poles are placed on a surface in a regular configuration. This method is a costly process and cannot easily be applied to large-scale objects with arbitrary shapes. In this work, we fabricated and characterized simpler low-cost superhydrophobic coatings based on controlling the volume of entrapped air in order to enhance durability (longevity) and the properties of the coating bringing the technology closer to large-scale submerged bodies such as submarines and ships. Two different low-cost fabricating techniques have been utilized: (i) random deposition of hydrophobic aerogel microparticles; and (ii) deposition of hydrophobic polymer micro- and nanofibers using DC-biased AC-electrospinning. The present study is aimed at providing experimental, numerical, and analytical models to characterize the superhydrophobicity and longevity of the coatings depending on the morphology of the surfaces and the concentration of the hydrophobic materials. The surface's micro/nanostructure were observed by field emission scanning electron microscopy. The degree of hydrophobicity of the coatings was estimated using drag-reduction and contact-angle measurements using a rheometer and a goniometer respectively. Furthermore, We have advanced and calibrated a novel optical technique to noninvasively measure the longevity of submerged superhydrophobic coatings subjected to different environmental conditions. We have also modeled the performance of superhydrophobic surfaces comprised of randomly distributed roughness. The numerical simulations are aimed at improving our understanding of the drag-reduction effect and the stability of the air–water interface against pressure in terms of the microstructure parameters. Moreover, we have experimentally characterized the terminal pressure (i.e. the pressure at which the air–water interface completely fails) of aerogel coatings with different morphologies.
6

Analytical Solution For Single Phase Microtube Heat Transfer Including Axial Conduction And Viscous Dissipation

Barisik, Murat 01 July 2008 (has links) (PDF)
Heat transfer of two-dimensional, hydrodynamically developed, thermally developing, single phase, laminar flow inside a microtube is studied analytically with constant wall temperature thermal boundary condition. The flow is assumed to be incompressible and thermo-physical properties of the fluid are assumed to be constant. Viscous dissipation and the axial conduction are included in the analysis. Rarefaction effect is imposed to the problem via velocity slip and temperature jump boundary conditions for the slip flow regime. The temperature distribution is determined by solving the energy equation together with the fully developed velocity profile. Analytical solutions are obtained for the temperature distribution and local and fully developed Nusselt number in terms of dimensionless parameters / Peclet number, Knudsen number, Brinkman number, and the parameter &amp / #954 / . The results are verified with the well-known ones from literature.
7

Effect Of Surface Roughness In Microchannels On Heat Transfer

Turgay, Metin Bilgehan 01 December 2008 (has links) (PDF)
In this study, effect of surface roughness on convective heat transfer and fluid flow in two dimensional parallel plate microchannels is analyzed by numerically. For this purpose, single-phase, developing, laminar fluid flow at steady state and in the slip flow regime is considered. The continuity, momentum, and energy equations for Newtonian fluids are solved numerically for constant wall temperature boundary condition. Slip velocity and temperature jump at wall boundaries are imposed to observe the rarefaction effect. Effect of axial conduction inside the fluid and viscous dissipation also considered separately. Roughness elements on the surfaces are simulated by triangular geometrical obstructions. Then, the effect of these roughness elements on the velocity field and Nusselt number are compared to the results obtained from the analyses of flows in microchannels with smooth surfaces. It is found that increasing surface roughness reduces the heat transfer at continuum conditions. However in slip flow regime, increase in Nusselt number with increasing roughness height is observed. Moreover, this increase is found to be more obvious at low rarefied flows. It is also found that presence of axial conduction and viscous dissipation has increasing effect on heat transfer in smooth and rough channels.
8

Analysis Of Single Phase Convective Heat Transfer In Microchannels With Variable Thermal Conductivity And Variable Viscosity

Gozukara, Arif Cem 01 February 2010 (has links) (PDF)
In this study simultaneously developing single phase, laminar and incompressible flow in a micro gap between parallel plates is numerically analyzed by including the effect of variation in thermal conductivity and viscosity with temperature. Variable property solutions for continuity, momentum and energy equations are performed in a coupled manner, for air as a Newtonian fluid. In these analyses the rarefaction effect, which is important for the slip flow regime, is taken into account by imposing slip velocity and temperature jump boundary conditions to the wall boundaries. Mainly, the influence of viscous dissipation, axial conduction, geometric parameters and rarefaction on the property variation effect is aimed to be discussed in detail. Therefore, the effects of variable thermal conductivity and viscosity are investigated simultaneously with the effects of rarefaction, geometric parameters, viscous dissipation and axial conduction. The difference between constant and variable solutions in terms of heat transfer characteristics is related to the effects of viscous dissipation axial conduction and rarefaction. According to results, property variation is substantially effective in the entrance region where temperature and velocity gradients are high. On the other hand, property variation effects are not significant for fully developed air flows in microchannel.
9

Generalized slip-flow theory and its related Knudsen-layer analysis / 一般すべり流理論とKnudsen層解析

Hattori, Masanari 23 March 2016 (has links)
The content of Chapter 1 is an author produced version of a paper published in Physics of Fluids. The final publication is available at AIP via http://dx.doi.org/10.1063/1.3691262. The content of Chapters 2 and 4 is an author produced version of papers published in Journal of Statistical Physics. The final publications are available at Springer via http://dx.doi.org/10.1007/s10955-012-0512-z and http://dx.doi.org/10.1007/s10955-015-1364-0, respectively. / 京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19682号 / 工博第4137号 / 新制||工||1638(附属図書館) / 32718 / 京都大学大学院工学研究科機械理工学専攻 / (主査)教授 青木 一生, 教授 髙田 滋, 教授 稲室 隆二 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
10

Experimental Investigation of Particle Lag behind a Shock Wave using a Novel Laser Doppler Accelerometer

Ecker, Tobias 06 September 2011 (has links)
Determination of particle slip is a major concern for particle based measurements in un- heated supersonic facilities, as it is a limiting factor for the instruments' frequency response. For the purpose of determining the particle deceleration through a stationary shock wave in a super sonic windtunnel, a novel 1-D Laser Doppler probe with an unique spatial range (~1.5 mm) is presented. The study first gives a short review of the physics of particle motion with respect to different drag models and flow regime encountered in super sonic flows. In the second part, the focus lies on the development of a new Laser Doppler probe using non Gaussian beams to obtain a prolonged measurement volume. This volume covers a major part of the particle lag after a shock wave. An experimental investigation on particle acceleration and drag, using different types and sizes of seeding material, including standardized microspheres is carried out in the Mâ = 2.0 super sonic facility. Three different types of particles with four different sizes are experimentally investigated. The experimental data provides mean velocity as a function of distance from the shock and reveals significant agglomeration and evaporation problems with Titanium Oxide and Polystyrene Latex spheres. Particle acceleration measurements are presented, proving the unique concept of the new Laser Doppler probe. Mean and instantaneous acceleration data is extracted from high SNR signals. The acceleration data obtained is consistent in magnitude and trend with the physical phenomena expected and shows the feasibility of the new instrument. / Master of Science

Page generated in 0.0357 seconds