• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desenvolvimento de defasadores baseados em MEMS e linhas de transmissão de ondas lentas para aplicações em 60 GHz. / Development of phase shifters based on shielded CPW and MEMS for 60 GHz.

Bedoya Llano, Franz Sebastian 28 November 2017 (has links)
Este trabalho, desenvolvido junto ao Grupo de Novos Materiais e Dispositivos (GNMD) pertencente ao Laboratório de Microeletrônica (LME) da Universidade de São Paulo, apresenta a modelagem de um defasador passivo miniaturizado com baixas perdas para aplicações em ondas milimétricas (mmW-milimeter waves). Este defasador é baseado em um conceito inovador utilizando sistemas micro-eletromecânicos (MEMS) distribuídos e linhas de transmissão coplanares de ondas lentas. Este conceito é proposto no projeto Jovem Pesquisador FAPESP (Processo no. 2011/18167-3), ao qual este projeto está vinculado. A defasagem neste tipo de dispositivo é conseguida pela liberação das fitas da camada de blindagem de uma linha de transmissão tipo S-CPW (Shielded-Coplanar Waveguide). As fitas liberadas podem ser movimentadas eletrostaticamente, o que praticamente não consome energia. Este projeto pretende projetar um defasador para fabricação com a tecnologia do Laboratório de Microeletrônica da Escola Politécnica da Universidade de São Paulo. Adicionalmente, este trabalho apresenta resultados experimentais de um processo de fabricação IN-HOUSE baseado na metodologia de integração por flip-chip. A tecnologia de integração implementada é baseada na soldagem de um chip sobre um substrato, no qual são construídos uma nova geração de pilares de cobre finos, cujo espaçamento entre pilares é menor que 100 ?m. Essa redução nas dimensões pode ser usada com a nova geração de dispositivos de comunicações na faixa das mmW. Em termos de fabricação, foram obtidos pilares de cobre altamente miniaturizados com uma altura significativa e uniforme que permite a integração com o chip. Além do mais, os resultados obtidos representam avanços significativos no processo de fabricação que será usado como tecnologia de integração híbrida em um interposer baseado em substrato de alumina nanoporosa (MnM-Metallic Nanowire Membrane). Esse interposer desempenha um papel indispensável no GNMD, já que atualmente estão sendo estudadas suas propriedades elétricas e já foram construídos dispositivos sobre o substrato com resultados promissores. / This work, performed at the New Materials and Devices Group (GNMD) of the Microelectronics Laboratory of the Polytechnic School of the University of São Paulo, presents the modeling of a miniaturized passive phase shifter with low losses for applications in millimeter waves. It is based on an innovated concept, which uses distributed MEMS phase shifters and slow-wave coplanar wave guides. Such concept is proposed under the FAPESP Youth Researcher project (Process number 2011/18167-3). The phase shifter on this kind of device is achieved by releasing the shielding layer of the Shielded-Coplanar Waveguide. The released ribbons are electrostatically displaced, which does not consume energy. The aim of this project is to design a phase shifter for fabrication with the technology available at the Microelectronics Laboratory. Additionally, this work presents experimental results of a flip-chip fabrication process. This technology is based on next generation of fine pitch copper pillar bumping, with pillar pitch of less than 100 ?m that support next generation of communication devices at the millimeter wave frequency range. From the fabrication point-of-view, highly miniaturized copper pillars with appropriate thicknesses were obtained. Furthermore, the results obtained represent a significant advance in the fabrication process that will be used as a hybrid integration technology on an interposer based on a nanoporous alumina substrate (MnM-Metallic Nanowire Membrane).
2

Desenvolvimento de defasadores baseados em MEMS e linhas de transmissão de ondas lentas para aplicações em 60 GHz. / Development of phase shifters based on shielded CPW and MEMS for 60 GHz.

Franz Sebastian Bedoya Llano 28 November 2017 (has links)
Este trabalho, desenvolvido junto ao Grupo de Novos Materiais e Dispositivos (GNMD) pertencente ao Laboratório de Microeletrônica (LME) da Universidade de São Paulo, apresenta a modelagem de um defasador passivo miniaturizado com baixas perdas para aplicações em ondas milimétricas (mmW-milimeter waves). Este defasador é baseado em um conceito inovador utilizando sistemas micro-eletromecânicos (MEMS) distribuídos e linhas de transmissão coplanares de ondas lentas. Este conceito é proposto no projeto Jovem Pesquisador FAPESP (Processo no. 2011/18167-3), ao qual este projeto está vinculado. A defasagem neste tipo de dispositivo é conseguida pela liberação das fitas da camada de blindagem de uma linha de transmissão tipo S-CPW (Shielded-Coplanar Waveguide). As fitas liberadas podem ser movimentadas eletrostaticamente, o que praticamente não consome energia. Este projeto pretende projetar um defasador para fabricação com a tecnologia do Laboratório de Microeletrônica da Escola Politécnica da Universidade de São Paulo. Adicionalmente, este trabalho apresenta resultados experimentais de um processo de fabricação IN-HOUSE baseado na metodologia de integração por flip-chip. A tecnologia de integração implementada é baseada na soldagem de um chip sobre um substrato, no qual são construídos uma nova geração de pilares de cobre finos, cujo espaçamento entre pilares é menor que 100 ?m. Essa redução nas dimensões pode ser usada com a nova geração de dispositivos de comunicações na faixa das mmW. Em termos de fabricação, foram obtidos pilares de cobre altamente miniaturizados com uma altura significativa e uniforme que permite a integração com o chip. Além do mais, os resultados obtidos representam avanços significativos no processo de fabricação que será usado como tecnologia de integração híbrida em um interposer baseado em substrato de alumina nanoporosa (MnM-Metallic Nanowire Membrane). Esse interposer desempenha um papel indispensável no GNMD, já que atualmente estão sendo estudadas suas propriedades elétricas e já foram construídos dispositivos sobre o substrato com resultados promissores. / This work, performed at the New Materials and Devices Group (GNMD) of the Microelectronics Laboratory of the Polytechnic School of the University of São Paulo, presents the modeling of a miniaturized passive phase shifter with low losses for applications in millimeter waves. It is based on an innovated concept, which uses distributed MEMS phase shifters and slow-wave coplanar wave guides. Such concept is proposed under the FAPESP Youth Researcher project (Process number 2011/18167-3). The phase shifter on this kind of device is achieved by releasing the shielding layer of the Shielded-Coplanar Waveguide. The released ribbons are electrostatically displaced, which does not consume energy. The aim of this project is to design a phase shifter for fabrication with the technology available at the Microelectronics Laboratory. Additionally, this work presents experimental results of a flip-chip fabrication process. This technology is based on next generation of fine pitch copper pillar bumping, with pillar pitch of less than 100 ?m that support next generation of communication devices at the millimeter wave frequency range. From the fabrication point-of-view, highly miniaturized copper pillars with appropriate thicknesses were obtained. Furthermore, the results obtained represent a significant advance in the fabrication process that will be used as a hybrid integration technology on an interposer based on a nanoporous alumina substrate (MnM-Metallic Nanowire Membrane).
3

Conception d'amplificateurs de puissance hautement linéaires à 60 GHz en technologies CMOS nanométriques / Design of highly linear 60GHz power amplifiers in nanoscale CMOS technologies

Larie, Aurélien 31 October 2014 (has links)
Dans le cadre des applications sans fil à 60GHz, l’amplificateur de puissance reste un des composants les plus compliqués à implémenter en technologie CMOS. Des modulations à enveloppe non constante obligent à concevoir des circuits hautement linéaires, conduisant à une consommation statique importante. La recherche de topologies et de techniques de linéarisation viables aux fréquences millimétriques fait l’objet de cette thèse. Dans un premier temps, un état de l’art des différents amplificateurs de puissance à 60GHz est dressé, afin d’en extraire l’ensemble des verrous technologiques limitant leurs performances. Suite à l’analyse des phénomènes physiques impactant les composants passifs, plusieurs structures d’amplificateurs élémentaires sont conçues dans les technologies 65nm et 28nm Bulk. Les topologies les plus pertinentes sont déduites de cette étude. Enfin, deux amplificateurs intégrant des techniques de combinaison de puissance et de linéarisation sont implémentés dans les technologies 65nm et 28nm FD-SOI. Ces deux circuits présentent les plus hauts facteurs de mérite ITRS publiés à ce jour. Le circuit en 28nm FD-SOI atteint en outre le meilleur compromis linéarité/consommation de l’état de l’art. / The CMOS 60GHz power amplifier (PA) remains one of the most design-challenging components. Indeed, a high linearity associated with a large back-off range are required due to complex modulated signals.In this context, this work focuses on the design of architectures and linearization techniques which are usable at millimeter-wave frequencies. First, a CMOS PA state of the art is presented to define all bottlenecks. Then, the physical phenomena impacting on passive device performances are described. Elementary PAs are implemented in CMOS 65nm and 28nm Bulk and the most suitable topologies are selected. Finally, two highly linear circuits are designed in 65nm Bulk and 28nm FD-SOI. They achieve the highest ITRS figures of merit reported to this day. In addition, the 28nm FD-SOI PA exhibits the best linearity/consumption tradeoff.

Page generated in 0.0997 seconds