• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation d'un biomarqueur pour l'étude en tomographie par émission de positons des récepteurs muscariniques de type M2 pour le diagnostic précoce de la maladie d'Alzheimer / Characterization of a potential in vivo biomarker for Alzheimer's Disease

Ravasi, Laura 19 September 2011 (has links)
La maladie d'Alzheimer (MA) a un impact socio-économique majeur. Le diagnostic n’est certain qu’à l'autopsie. Il n’existe pas de biomarqueur assurant un diagnostic précoce in vivo. Les quatre traitements actuellement disponibles sont symptomatiques. Les autres traitements qui ont fait l’objet d’essais de recherche clinique, n’ont pas démontré de modification de l’évolution de la maladie. Les hypothèses sous-jacentes à cet échec sont soit l’inefficacité du traitement, soit un manque d'homogénéité de la population étudiée (diagnostic différentiel parfois très compliqué), soit l’absence de biomarqueurs fiables in vivo en mesure de détecter une modification. Dans ce contexte, il est essentiel d'identifier un biomarqueur in vivo qui permette d’établir le diagnostic différentiel entre la MA et les autres démences et d’évaluer l'efficacité des traitements. Ce travail vise à caractériser in vitro, ex vivo et in vivo le 3 - (3 - (3-fluoropropylthio) -1,2,5-thiadiazole-4-yl) -1,2,5,6-tétrahydro-1-méthylpyridine [FP-TZTP], chez les rongeurs pour évaluer son intérêt en tant que biomarqueur potentiel pour la maladie d'Alzheimer. Après avoir établi que l’expression du sous type M2 des récepteurs muscariniques était modifiée précocement dans la MA, nous avons mis en évidence une distribution du radiotraceur fluoré FP-TZTP spécifique de M2 chez la souris génétiquement modifiée ‘knock out’. Afin de mieux caractériser ce radiotraceur, nous avons effectué des études de culture cellulaire in vitro ainsi que des études ex-vivo sur du tissu cérébral pour comprendre la spécificité du [18F]FP-TZTP (Résultats #1). Les résultats ex-vivo nous ont encouragés à réaliser les études in vivo. Nous avons choisi la tomographie par émission de positons (TEP) qui permet l’étude in vivo et non invasive de la biodistribution du [18F]FP-TZTP chez le rat, en utilisant le scanner pour animaux de petite taille (ATLAS) développé par « The National Institutes of Health , Bethesda, MD, USA» (Résultats #4). Pour cela, nous avons dans un premier temps testé l'ATLAS au moyen de deux études métaboliques chez le rat, avec un traceur couramment utilisé, le [18F]fluorodéoxyglucose ([18F]FDG) (Résultats #2; Résultats #3). Nos études suggèrent que le [18F]FP-TZTP est un traceur approprié pour la quantification en TEP des récepteurs muscariniques de type M2, utile pour le diagnostic précoce de la MA. / Alzheimer’s disease (AD) has an increasingly critical impact on society from the socio-economic point of view in addition to being very burdensome for the patients themselves, their relatives and friends. Diagnosis of certitude is only at post mortem and no single biomarker has yet been found to be accurate for early in vivo diagnosis. The current available treatments are only symptomatic. The few treatments under research trials have failed to demonstrate a disease modification for either lack of actual treatment efficacy or for lack of population homogeneity and for lack of reliable in vivo biomarkers able to detect a modification. In this context, it is both urgent and necessary to identify an in vivo biomarker that enables i) the differential diagnosis of AD among other dementias and ii) the assessment of treatment efficacy as a follow up in AD patients, is clearly very noticeable. This work aims to characterize the 3-(3-(3-fluoropropylthio)-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridine [FP-TZTP], by use of in vitro, ex–vivo and in vivo methods in rodents, to assess whether it is a suitable biomarker for Alzheimer’s disease. An impairment of the M2 subtype of the muscarinic receptors was noticed in AD patients and clear evidences of M2 selectivity in knock out mice previously injected with the fluorinated radiotracer FP-TZTP was observed. To further characterize such M2 selectivity, we performed in vitro cell culture and ex-vivo tissue dipping studies (Results #1). Encouraged by the ex-vivo results, we went on to the in vivo world. We elected the non-invasive nuclear medicine imaging technique Positron Emission Tomography (PET) to assess the biodistribution of the [18F]FP-TZTP in rats by use of the Advanced Technology Laboratory Animal Scanner (ATLAS) developed at the National Institutes of Health, Bethesda, MD, USA (Results #4). We had first assessed the ATLAS as a legitimate tool by use of a commonly used and well known radiotracer, the [18F]fluorodeoxyglucose ([18F]FDG) (Results #2 and #3). Our studies suggest that [18F]FP-TZTP may be a biomarker for AD as it is a suitable tracer for in vivo quantification of the M2 receptors.
2

Characterization of cAMP-Specific Phosphodiesterase-4 (R)-[11C]Rolipram Small Animal Positron Emission Tomography and Application in a Streptozotocin-Induced Model of Hyperglycemia

Thomas, Adam J. 18 April 2011 (has links)
Elevated sympathetic nervous system (SNS) tone contributes to excess cardiac mortality associated with type 2 diabetes mellitus (T2DM). Chronic SNS stimulation has detrimental effects to the heart, in particular, with its cell signaling abilities. (R)-[11C]Rolipram small animal positron emission tomography (PET), an noninvasive nuclear imaging modality, was used to assess phosphodiesterase-4 (PDE4) alterations in a high fat diet (HFD), streptozotocin (STZ) induced model of hyperglycemia in rats. Prior to investigation in the animal model, characterization of (R)-[11C]rolipram small animal PET was completed. (R)-[11C]Rolipram binds specifically to PDE4 in the rat heart demonstrated by competitive blockade with (R)-rolipram with the PDE4 enzyme susceptible to saturation with increasing injected masses of unlabeled rolipram. (R)-[11C]Rolipram cardiac retention was elevated by acute norepinephrine stimulation via desipramine pharmacologic challenge. Quantitative (R)-[11C]rolipram PET was highly reproducible in the heart and presents an ideal avenue to investigate PDE4 alterations. (R)-[11C]rolipram small animal PET did not reveal changes in PDE4 expression and activity in STZ-treated hyperglycemic animals compared to STZ-treated euglycemic and control groups. In vitro measures of PDE4 enzyme expression and activity, with or without desipramine, were also not altered between treatment groups. Although (R)-[11C]rolipram small animal PET does not reveal PDE4 alterations in this animal model of diabetes, its utility to assess PDE4 alterations in other over active SNS pathologies, such as heart failure and obesity, remains.
3

Characterization of cAMP-Specific Phosphodiesterase-4 (R)-[11C]Rolipram Small Animal Positron Emission Tomography and Application in a Streptozotocin-Induced Model of Hyperglycemia

Thomas, Adam J. 18 April 2011 (has links)
Elevated sympathetic nervous system (SNS) tone contributes to excess cardiac mortality associated with type 2 diabetes mellitus (T2DM). Chronic SNS stimulation has detrimental effects to the heart, in particular, with its cell signaling abilities. (R)-[11C]Rolipram small animal positron emission tomography (PET), an noninvasive nuclear imaging modality, was used to assess phosphodiesterase-4 (PDE4) alterations in a high fat diet (HFD), streptozotocin (STZ) induced model of hyperglycemia in rats. Prior to investigation in the animal model, characterization of (R)-[11C]rolipram small animal PET was completed. (R)-[11C]Rolipram binds specifically to PDE4 in the rat heart demonstrated by competitive blockade with (R)-rolipram with the PDE4 enzyme susceptible to saturation with increasing injected masses of unlabeled rolipram. (R)-[11C]Rolipram cardiac retention was elevated by acute norepinephrine stimulation via desipramine pharmacologic challenge. Quantitative (R)-[11C]rolipram PET was highly reproducible in the heart and presents an ideal avenue to investigate PDE4 alterations. (R)-[11C]rolipram small animal PET did not reveal changes in PDE4 expression and activity in STZ-treated hyperglycemic animals compared to STZ-treated euglycemic and control groups. In vitro measures of PDE4 enzyme expression and activity, with or without desipramine, were also not altered between treatment groups. Although (R)-[11C]rolipram small animal PET does not reveal PDE4 alterations in this animal model of diabetes, its utility to assess PDE4 alterations in other over active SNS pathologies, such as heart failure and obesity, remains.
4

Characterization of cAMP-Specific Phosphodiesterase-4 (R)-[11C]Rolipram Small Animal Positron Emission Tomography and Application in a Streptozotocin-Induced Model of Hyperglycemia

Thomas, Adam J. 18 April 2011 (has links)
Elevated sympathetic nervous system (SNS) tone contributes to excess cardiac mortality associated with type 2 diabetes mellitus (T2DM). Chronic SNS stimulation has detrimental effects to the heart, in particular, with its cell signaling abilities. (R)-[11C]Rolipram small animal positron emission tomography (PET), an noninvasive nuclear imaging modality, was used to assess phosphodiesterase-4 (PDE4) alterations in a high fat diet (HFD), streptozotocin (STZ) induced model of hyperglycemia in rats. Prior to investigation in the animal model, characterization of (R)-[11C]rolipram small animal PET was completed. (R)-[11C]Rolipram binds specifically to PDE4 in the rat heart demonstrated by competitive blockade with (R)-rolipram with the PDE4 enzyme susceptible to saturation with increasing injected masses of unlabeled rolipram. (R)-[11C]Rolipram cardiac retention was elevated by acute norepinephrine stimulation via desipramine pharmacologic challenge. Quantitative (R)-[11C]rolipram PET was highly reproducible in the heart and presents an ideal avenue to investigate PDE4 alterations. (R)-[11C]rolipram small animal PET did not reveal changes in PDE4 expression and activity in STZ-treated hyperglycemic animals compared to STZ-treated euglycemic and control groups. In vitro measures of PDE4 enzyme expression and activity, with or without desipramine, were also not altered between treatment groups. Although (R)-[11C]rolipram small animal PET does not reveal PDE4 alterations in this animal model of diabetes, its utility to assess PDE4 alterations in other over active SNS pathologies, such as heart failure and obesity, remains.
5

Characterization of cAMP-Specific Phosphodiesterase-4 (R)-[11C]Rolipram Small Animal Positron Emission Tomography and Application in a Streptozotocin-Induced Model of Hyperglycemia

Thomas, Adam J. January 2011 (has links)
Elevated sympathetic nervous system (SNS) tone contributes to excess cardiac mortality associated with type 2 diabetes mellitus (T2DM). Chronic SNS stimulation has detrimental effects to the heart, in particular, with its cell signaling abilities. (R)-[11C]Rolipram small animal positron emission tomography (PET), an noninvasive nuclear imaging modality, was used to assess phosphodiesterase-4 (PDE4) alterations in a high fat diet (HFD), streptozotocin (STZ) induced model of hyperglycemia in rats. Prior to investigation in the animal model, characterization of (R)-[11C]rolipram small animal PET was completed. (R)-[11C]Rolipram binds specifically to PDE4 in the rat heart demonstrated by competitive blockade with (R)-rolipram with the PDE4 enzyme susceptible to saturation with increasing injected masses of unlabeled rolipram. (R)-[11C]Rolipram cardiac retention was elevated by acute norepinephrine stimulation via desipramine pharmacologic challenge. Quantitative (R)-[11C]rolipram PET was highly reproducible in the heart and presents an ideal avenue to investigate PDE4 alterations. (R)-[11C]rolipram small animal PET did not reveal changes in PDE4 expression and activity in STZ-treated hyperglycemic animals compared to STZ-treated euglycemic and control groups. In vitro measures of PDE4 enzyme expression and activity, with or without desipramine, were also not altered between treatment groups. Although (R)-[11C]rolipram small animal PET does not reveal PDE4 alterations in this animal model of diabetes, its utility to assess PDE4 alterations in other over active SNS pathologies, such as heart failure and obesity, remains.
6

Improving attenuation corrections obtained using singles-mode transmission data in small-animal PET

Vandervoort, Eric 05 1900 (has links)
The images in positron emission tomography (PET) represent three dimensional dynamic distributions of biologically interesting molecules labelled with positron emitting radionuclides (radiotracers). Spatial localisation of the radio-tracers is achieved by detecting in coincidence two collinear photons which are emitted when the positron annihilates with an ordinary electron. In order to obtain quantitatively accurate images in PET, it is necessary to correct for the effects of photon attenuation within the subject being imaged. These corrections can be obtained using singles-mode photon transmission scanning. Although suitable for small animal PET, these scans are subject to high amounts of contamination from scattered photons. Currently, no accurate correction exists to account for scatter in these data. The primary purpose of this work was to implement and validate an analytical scatter correction for PET transmission scanning. In order to isolate the effects of scatter, we developed a simulation tool which was validated using experimental transmission data. We then presented an analytical scatter correction for singles-mode transmission data in PET. We compared our scatter correction data with the previously validated simulation data for uniform and non-uniform phantoms and for two different transmission source radionuclides. Our scatter calculation correctly predicted the contribution from scattered photons to the simulated data for all phantoms and both transmission sources. We then applied our scatter correction as part of an iterative reconstruction algorithm for simulated and experimental PET transmission data for uniform and non-uniform phantoms. We also tested our reconstruction and scatter correction procedure using transmission data for several animal studies (mice, rats and primates). For all studies considered, we found that the average reconstructed linear attenuation coefficients for water or soft-tissue regions of interest agreed with expected values to within 4%. Using a 2.2 GHz processor, the scatter correction required between 6 to 27 minutes of CPU time (without any code optimisation) depending on the phantom size and source used. This extra calculation time does not seem unreasonable considering that, without scatter corrections, errors in the reconstructed attenuation coefficients were between 18 to 45% depending on the phantom size and transmission source used.
7

Improving attenuation corrections obtained using singles-mode transmission data in small-animal PET

Vandervoort, Eric 05 1900 (has links)
The images in positron emission tomography (PET) represent three dimensional dynamic distributions of biologically interesting molecules labelled with positron emitting radionuclides (radiotracers). Spatial localisation of the radio-tracers is achieved by detecting in coincidence two collinear photons which are emitted when the positron annihilates with an ordinary electron. In order to obtain quantitatively accurate images in PET, it is necessary to correct for the effects of photon attenuation within the subject being imaged. These corrections can be obtained using singles-mode photon transmission scanning. Although suitable for small animal PET, these scans are subject to high amounts of contamination from scattered photons. Currently, no accurate correction exists to account for scatter in these data. The primary purpose of this work was to implement and validate an analytical scatter correction for PET transmission scanning. In order to isolate the effects of scatter, we developed a simulation tool which was validated using experimental transmission data. We then presented an analytical scatter correction for singles-mode transmission data in PET. We compared our scatter correction data with the previously validated simulation data for uniform and non-uniform phantoms and for two different transmission source radionuclides. Our scatter calculation correctly predicted the contribution from scattered photons to the simulated data for all phantoms and both transmission sources. We then applied our scatter correction as part of an iterative reconstruction algorithm for simulated and experimental PET transmission data for uniform and non-uniform phantoms. We also tested our reconstruction and scatter correction procedure using transmission data for several animal studies (mice, rats and primates). For all studies considered, we found that the average reconstructed linear attenuation coefficients for water or soft-tissue regions of interest agreed with expected values to within 4%. Using a 2.2 GHz processor, the scatter correction required between 6 to 27 minutes of CPU time (without any code optimisation) depending on the phantom size and source used. This extra calculation time does not seem unreasonable considering that, without scatter corrections, errors in the reconstructed attenuation coefficients were between 18 to 45% depending on the phantom size and transmission source used.
8

Improving attenuation corrections obtained using singles-mode transmission data in small-animal PET

Vandervoort, Eric 05 1900 (has links)
The images in positron emission tomography (PET) represent three dimensional dynamic distributions of biologically interesting molecules labelled with positron emitting radionuclides (radiotracers). Spatial localisation of the radio-tracers is achieved by detecting in coincidence two collinear photons which are emitted when the positron annihilates with an ordinary electron. In order to obtain quantitatively accurate images in PET, it is necessary to correct for the effects of photon attenuation within the subject being imaged. These corrections can be obtained using singles-mode photon transmission scanning. Although suitable for small animal PET, these scans are subject to high amounts of contamination from scattered photons. Currently, no accurate correction exists to account for scatter in these data. The primary purpose of this work was to implement and validate an analytical scatter correction for PET transmission scanning. In order to isolate the effects of scatter, we developed a simulation tool which was validated using experimental transmission data. We then presented an analytical scatter correction for singles-mode transmission data in PET. We compared our scatter correction data with the previously validated simulation data for uniform and non-uniform phantoms and for two different transmission source radionuclides. Our scatter calculation correctly predicted the contribution from scattered photons to the simulated data for all phantoms and both transmission sources. We then applied our scatter correction as part of an iterative reconstruction algorithm for simulated and experimental PET transmission data for uniform and non-uniform phantoms. We also tested our reconstruction and scatter correction procedure using transmission data for several animal studies (mice, rats and primates). For all studies considered, we found that the average reconstructed linear attenuation coefficients for water or soft-tissue regions of interest agreed with expected values to within 4%. Using a 2.2 GHz processor, the scatter correction required between 6 to 27 minutes of CPU time (without any code optimisation) depending on the phantom size and source used. This extra calculation time does not seem unreasonable considering that, without scatter corrections, errors in the reconstructed attenuation coefficients were between 18 to 45% depending on the phantom size and transmission source used. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
9

Quality control of PET camera for small animal imaging / Έλεγχος ποιότητας κάμερας PET για απεικόνιση μικρών ζώων

Ευθυμίου, Νικόλαος 06 February 2009 (has links)
- / The term Molecular Imaging (MI) can be broadly defined as the in vivo characterization and measurement of biological processes at the cellular and molecular level. In contradistinction to “classical” diagnostic imaging, it sets forth to probe the molecular abnormalities that are the basis of disease rather than to image the end effects of these molecular alterations. The underlying biology represents a new arena for many researchers. A number of technological challenges such as signal amplification, data and image processing and efficient imaging strategies, provide a fast growing scientific domain. Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI), Single Photon Emission Tomography (SPECT) and optical imaging are the main tools of clinical molecular imaging. Nuclear medicine techniques (SPECT and PET) are key players in MI. New radiopharmaceutical products are currently being developed, in order to increase the specificity and sensitivity of existing imaging techniques. Small animal imaging is the main tool for the evaluation of those derivatives, especially in dynamic in vivo studies. In this, preclinical part, high resolution and high sensitivity imaging equipment is necessary; as a result a number of such prototypes have been developed worldwide and some of them are commercialized. However, there cost is usually not affordable for small or medium size laboratories. In this work a low cost dual head PET camera, suitable for high resolution small animal studies has been developed. It is the result of the collaboration between Jefferson lab and Technological Educational Institute of Athens (TEI) and is currently evaluated in Institute of Radioisotopes and Radiodiagnostic Products (IRRP), in “Demokritos” Center. The system has a field of view of 5x5cm and is based on 2 H8500 position sensitive photomultiplier tubes (PSPMTs), coupled to two LSO crystals with 2.5x2.5mm pixel size. Then an FPGA based data acquisition system and proper data reconstruction system collect events, sort coincidences and produce images. The DAQ board consists of 16-channel DAQ modules installed on a USB2 carrier. Each channel is an independent acquisition system consisting of traditional analog pulse processing, FPGA analog control, and FPGA signal processing. After acquisition and processing, channel data are assembled into event blocks for readout by the carrier board. Application specific tasks are performed in JAVA using the Kmax interface. The GUI was designed to be easy-to-use. In order to further analyze images and process the results proper algorithms were developed in MATLAB and ImageJ. Systems evaluation has been carried out using FDG. Point sources have been used for systems calibration. Capillaries with 1.1mm inner diameter were imaged and used for resolution calculation. Finally a mouse injected with 100μCi of FDG was imaged. Spatial resolution has been measured using thin capillaries (1.1mm inner diameter) and found equal to 3,5mm in planar mode. This lower limit is determined by LSO pixels size (2.5×25mm2). Simulation studies have shown that resolution lower than 2mm will be achieved in tomographic mode. Mice injected with FDG are presented. Brain and heart are clearly imaged. Currently, a rotating base is constructed, in order to upgrade the system to a tomographic PET. PET results will be presented as well. In addition, IRRP and TEI are working on new radiopharmaceuticals based on Cu-64. It must be stated that PET market opened in Greece four years ago; This system is the first working small PET prototype in Greece and it initiates national preclinical PET research.

Page generated in 0.0497 seconds