• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assessment of Ti-6Al-4V Laser Clad Repair

Paul Francis Gardner (12429849) 19 April 2022 (has links)
<p>Damaged components and a lack of spare components are issues which are currently affecting military aircraft capability. Laser Cladding is an additive manufacturing technique which shows promise in repairing damaged aviation components. However, there are considerable certification requirements for critical components which stand to gain the most benefits from laser clad repair methodologies. These requirements involve establishing crack growth rate data for the laser clad material to gain confidence in the reliability of the repair's performance on in-service aircraft. This research seeks to understand the fatigue behavior of Ti-6Al-4V that has undergone a simulated laser clad repair, with unrepaired specimens also tested to allow for comparison. </p>
2

Experiments And Modeling Of Fatigue And Fracture Of Aluminum Alloys

Jordon, J Brian 13 December 2008 (has links)
In this work, understanding the microstructural effects of monotonic and cyclic failure of wrought 7075-T651 and cast A356 aluminum alloys were examined. In particular, the structure-property relations were quantified for the plasticity/damage model and two fatigue crack models. Several types of experiments were employed to adapt an internal state variable plasticity and damage model to the wrought alloy. The damage model was originally developed for cast alloys and thus, the model was modified to account for void nucleation, growth, and coalescence for a wrought alloy. In addition, fatigue experiments were employed to determine structure-property relations for the cast alloy. Based on microstructural analysis of the fracture surfaces, modifications to the microstructurally-based MultiStage fatigue model were implemented. Additionally, experimental fatigue crack results were used to calibrate FASTRAN, a fatigue life prediction code, to small fatigue-crack-growth behavior. Lastly, a set of experiments were employed to explore the damage history effect associated with cast and wrought alloys and to provide motivation for monotonic and fatigue modeling efforts.

Page generated in 0.0736 seconds