Spelling suggestions: "subject:"smallsignal"" "subject:"malignal""
1 |
TRANSIENT DROOP CONTROL STRATEGY FOR PARALLEL OPERATION OF DISTRIBUTED ENERGY RESOURCES IN AN ISLANDED MICROGRIDHassanzahraee, Mohammad 27 April 2012 (has links)
Future electric grid will evolve from the current centralized and radial model toward a more distributed one. In recent years, distributed generation (DG) units have been playing an important role in electric generation due to their promising advantages in reducing air pollution, improving power system efficiency, and relieving stress on power transmission and delivery systems. Despite the increased penetration of DG systems, the application of individual DG system always has its limitation such as high cost/W, limited capacity and reliability, and safety concerns. A better way to utilize the emerging potential of DG is to take a system approach viewing generation and associated loads as a subsystem called a “microgrid”.
Forming an electric island, the microgrid can work autonomously following a disturbance. In the islanded microgrid, micro sources are responsible for maintaining the voltage and the frequency of the microgrid system within their specified limits and sharing the load between the generators in a stable manner. However, a robust and stable operation of a microgrid depends on a robust control scheme of the microgrid sources.
The most common technique to control microgrid sources is based on conventional droop characteristics. Although the conventional frequency/voltage droop technique properly shares a common active load, the reactive power sharing accuracy can be strongly affected by system parameter and active power control. In addition, frequency variations of different sources in transient mode can cause poor active power sharing.
To override the above-mentioned problems, a novel frequency/voltage droop scheme is proposed in this thesis. The proposed scheme improves the performance of the microgrid in terms of power sharing and voltage regulation and smooths the system’s dynamic and transient responses.
This work has developed the modeling, control parameters design, and power-sharing control starting from a single voltage source inverter to a number of interconnected DG units forming a flexible microgrid. Specifically, this thesis presents:
• A control-oriented modeling based on active and reactive power analysis.
• A control synthesis based on enhanced droop control technique.
• A small signal stability study to give guidelines for properly adjusting the control system parameters according to the desired dynamic response. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2012-04-25 12:08:48.634
|
2 |
Investigation of small signal dynamic performance of IPFC and UPFC devices embedded in AC networksJiang, Shan 20 January 2011 (has links)
This thesis proposes the small signal model for the Interline Power Flow Controller (IPFC). Using this model, the damping performance of the IPFC with different power system configuration is investigated and also compared with the AC Transmission System (FACTS) based controllers such as the Unified Power Flow Controller (UPFC).
The IPFC and the UPFC in constant power control mode can be viewed as effectively cutting the connected transmission line. This change on the structure of the network results in a significant change on the small signal stability.
This thesis also addresses issues regarding the different levels of models that are required for the investigation of the behavior of FACTS. An effective validation approach that uses a minimum sized demonstration platform is proposed. This platform is small enough for detailed EMTP validation, yet large enough to exhibit the range of transient electrical and electromechanical behavior which is the focus for FACTS devices. To demonstrate the approach, the small signal models of the system embedded with the IPFC and the UPFC are developed respectively. The results obtained from small signal analysis are validated with EMTP-type simulation and show a close agreement.
|
3 |
Power System Controller Design by Optimal Eigenstructure AssignmentKshatriya, Niraj 03 1900 (has links)
In this thesis the eigenstructure (eigenvalues and eigenvectors) assignment technique based algorithm has been developed for the design of controllers for power system applications. The application of the algorithm is demonstrated by designing power system stabilizers (PSSs) that are extensively used to address the small-signal rotor angle stability problems in power systems. In the eigenstructure assignment technique, the critical eigenvalues can be relocated as well as their associated eigenvectors can be modified. This method is superior and yield better dynamical performance compared to the widely used frequency domain design method, in which only the critical eigenvalues are relocated and no attempt is made to modify the eigenvectors.
The reviewed published research has demonstrated successful application of the eigenstructure assignment technique in the design of controllers for small control systems. However, the application of this technique in the design of controllers for power systems has not been investigated rigorously.
In contrast to a small system, a power system has a very large number state variables compared to the combined number of system inputs and outputs. Therefore, the eigenstructure assignment technique that has been successfully applied in the design of controllers for small systems could not be applied as is in the design of power system controllers. This thesis proposes a novel approach to the application of the eigenstructure assignment technique in the design of power system controllers. In this new approach, a multi-objective nonlinear optimization problem (MONLOP) is formulated by quantifying different design objectives as a function of free parametric vectors. Then the MONLOP is solved for the free parametric vectors using a nonlinear optimization technique. Finally, the solution of the controller parameters is obtained using the solved free parametric vectors.
The superiority of the proposed method over the conventional frequency domain method is demonstrated by designing controllers for three different systems and validating the controllers through nonlinear transient simulations. One of the cases includes design of a PSS for the Manitoba Hydro system having about 29,000 states variables, which demonstrates the applicability of the proposed algorithm for a practical real-world system.
|
4 |
Small-signal Dynamic Stability Enhancement Of A DC-segmented AC Power SystemPirooz Azad, Sahar 21 August 2014 (has links)
This thesis proposes a control strategy for small-signal dynamic stability enhancement of a DC-segmented AC power system. This control strategy provides four control schemes based on HVDC supplementary control or modification of the operational condition of the HVDC control system to improve the system stability by (i) damping the oscillations within a segment using supplementary current control of a line-commutated HVDC link, based on the model predictive control (MPC) method (control scheme 1), (ii) minimizing the propagation of dynamics among the segments based on a coordinated linear quadratic Gaussian (LQG)-based supplementary control (control scheme 2), (iii) selectively distributing the oscillations among the segments based on a coordinated LQG-based supplementary control (control scheme 3) and (iv) changing the set-points of the HVDC control system in the direction determined based on the sensitivities of the Hopf stability margin to the HVDC links set-points (control scheme 4). Depending on the system characteristics, one or more of the proposed control schemes may be effective for mitigating the system oscillations.
Study results show that (i) control scheme 1 leads to damped low-frequency oscillations and provides fast recovery times after faults, (ii) under control scheme 2, each segment in a DC-segmented system can experience major disturbances without causing adjacent segments to experience the disturbances with the same degree of severity, (iii) control scheme 3 enables the controlled propagation of the oscillations among segments and damps out the oscillatory dynamics in the faulted segment, and (iv) control scheme 4 improves the stability margin for Hopf bifurcations caused by various events.
Since power system software tools exhibit limitations for advanced control design, this thesis also presents a methodology based on MATLAB/Simulink software to (i) systematically construct the nonlinear differential-algebraic model of an AC-DC system, and (ii) automatically extract a linearized state space model of the system for the design of the proposed control schemes. The nonlinear model also serves as a platform for the time-domain simulation of power system dynamics. The accuracy of the MATLAB/Simulink-based AC-DC power system model and time-domain simulation platform is validated by comparison against PSS/E.
|
5 |
Investigation of small signal dynamic performance of IPFC and UPFC devices embedded in AC networksJiang, Shan 20 January 2011 (has links)
This thesis proposes the small signal model for the Interline Power Flow Controller (IPFC). Using this model, the damping performance of the IPFC with different power system configuration is investigated and also compared with the AC Transmission System (FACTS) based controllers such as the Unified Power Flow Controller (UPFC).
The IPFC and the UPFC in constant power control mode can be viewed as effectively cutting the connected transmission line. This change on the structure of the network results in a significant change on the small signal stability.
This thesis also addresses issues regarding the different levels of models that are required for the investigation of the behavior of FACTS. An effective validation approach that uses a minimum sized demonstration platform is proposed. This platform is small enough for detailed EMTP validation, yet large enough to exhibit the range of transient electrical and electromechanical behavior which is the focus for FACTS devices. To demonstrate the approach, the small signal models of the system embedded with the IPFC and the UPFC are developed respectively. The results obtained from small signal analysis are validated with EMTP-type simulation and show a close agreement.
|
6 |
Power System Controller Design by Optimal Eigenstructure AssignmentKshatriya, Niraj 03 1900 (has links)
In this thesis the eigenstructure (eigenvalues and eigenvectors) assignment technique based algorithm has been developed for the design of controllers for power system applications. The application of the algorithm is demonstrated by designing power system stabilizers (PSSs) that are extensively used to address the small-signal rotor angle stability problems in power systems. In the eigenstructure assignment technique, the critical eigenvalues can be relocated as well as their associated eigenvectors can be modified. This method is superior and yield better dynamical performance compared to the widely used frequency domain design method, in which only the critical eigenvalues are relocated and no attempt is made to modify the eigenvectors.
The reviewed published research has demonstrated successful application of the eigenstructure assignment technique in the design of controllers for small control systems. However, the application of this technique in the design of controllers for power systems has not been investigated rigorously.
In contrast to a small system, a power system has a very large number state variables compared to the combined number of system inputs and outputs. Therefore, the eigenstructure assignment technique that has been successfully applied in the design of controllers for small systems could not be applied as is in the design of power system controllers. This thesis proposes a novel approach to the application of the eigenstructure assignment technique in the design of power system controllers. In this new approach, a multi-objective nonlinear optimization problem (MONLOP) is formulated by quantifying different design objectives as a function of free parametric vectors. Then the MONLOP is solved for the free parametric vectors using a nonlinear optimization technique. Finally, the solution of the controller parameters is obtained using the solved free parametric vectors.
The superiority of the proposed method over the conventional frequency domain method is demonstrated by designing controllers for three different systems and validating the controllers through nonlinear transient simulations. One of the cases includes design of a PSS for the Manitoba Hydro system having about 29,000 states variables, which demonstrates the applicability of the proposed algorithm for a practical real-world system.
|
7 |
The modelling of quasi-resonant and multi-resonant boost convertersSzabo, Adrian January 1998 (has links)
No description available.
|
8 |
The performance of conventional and dual-fed distributed amplifiers, and the use of the heterojunction bipolar transistor in such structuresBotterill, Iain Andrew January 1995 (has links)
No description available.
|
9 |
Small-signal Modeling of Resonant ConvertersAyachit, Agasthya 23 August 2011 (has links)
No description available.
|
10 |
Analysis and Design of High-Intensity-Discharge Lamp Ballast for Automotive HeadlampHu, Yongxuan 26 November 2001 (has links)
The High-Intensity-Discharge Lamps (HID), consisting of a broad range of gas discharge lamps, are notable for their high luminous efficacy, good color rendering, and long life. Metal halide lamps have the best combination of the above properties and are considered the most ideal light sources. Recently, there has been an emerging demand to replace the conventional halogen headlamps with the newly introduced small-wattage metal halide HID lamps. However, this lamp demands a highly efficient ballast and very complex control circuitry that can achieve fast turn-on and different regulation modes during the lamp start-up process.
Due to the complex lamp v-i profile and timing control requirements, control circuit built with conventional analog control is unavoidably cumbersome. With the unparalleled flexibility and programmability, digital control shows more advantages in this application. An automotive HID ballast with digital controller is developed to demonstrate the feasibility of the digital control along with some key issues in digital controller selection and design. Results show that the microcontroller-based HID ballast can successfully realize the required control functions and achieve a smooth turn-on process and a fast turn-on time of 8 seconds.
One of the major issues of ballast design is the ballast/HID lamp system stability, which originates from the lamp negative incremental impedance. The lamp small-signal model is presented with simulation and measurements. The negative incremental impedance is attributed to a RHP zero in the small-signal model. A new analysis approach, impedance ratio criterion, is proposed to analyze the system stability. With this approach, it clearly shows how the control configurations and converter and control design affect the system stability. The results can provide guidance and be easily used in control configuration selection and converter and control design. Analysis shows that ballast based on PWM converter without inner current loop is unstable and with inner current loop can stabilized the system. This is the reason why for a microcontroller-based ballast system the inner current loop has to be used.
HID lamp has its special acoustic resonance problem and thus a low-frequency unregulated full-bridge is used following the front-end DC/DC converter. To prevent from lamp re-igniting during each bridge commutation, a minimum current changing slope has to be guaranteed. In order to help design the converter, the ballast/lamp re-ignition analysis is presented. With this analysis, it shows that the output capacitance has to be small enough to ensure adequate current slope during zero crossing. Though some approximation is used to simplify the analysis, the results can provide qualitative guidance in the ballast design. / Master of Science
|
Page generated in 0.044 seconds