• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of High Momentum Flux Combustion Powered Fluidic Actuators for High Speed Flow Control

Warta, Brett James 15 November 2007 (has links)
The performance of a high-power small-scale combustion-based fluidic actuator for high-speed flow control applications is characterized with specific focus on comparisons between premixed and nonpremixed operating modes for the device. Momentary (pulsed) actuation jets are produced by the ignition of a mixture of gaseous fuel and oxidizer within a small (cubic centimeter scale) combustion chamber. The combustion process yields a high pressure burst (1 to 3 ms in duration in the typical configurations) and the ejection of a high-speed exhaust jet. The actuation frequency can be continuously varied by independently controlling the flow rate of the fuel/oxidizer and the spark ignition frequency up to a maximum determined by the operating characteristics of the actuator. The actuator performance is characterized by both its peak thrust and net total impulse, with increases in peak jet momentum often two to three orders of magnitude above the baseline steady jet. Results for operation of the device in both premixed and nonpremixed modes are presented and analyzed, with nonpremixed operation typically yielding higher pressures and greater frequency ranges in the present configurations.
2

Internal flow effects on performance of combustion powered actuators

Rajendar, Ashok 18 November 2011 (has links)
Earlier investigations of Combustion Powered Actuation (COMPACT) have demonstrated its utility for high-speed aerodynamic flow control. In this actuation approach, momentary (pulsed) actuation jets are produced by the ignition of a mixture of gaseous fuel and oxidizer within a cubic-centimeter scale chamber. The combustion process yields a high pressure burst and the ejection of a high-speed exhaust jet. The present thesis focuses on characterization of the effects of the internal flow (which is altered through the fuel and oxidizer inlet streams) on mixing and flame propagation within the actuator's combustion chamber, and thereby on actuator operation and performance. A test chamber with a grid of interchangeable air and fuel inlets was used for parametric investigations of the effects of inlet size and location. Actuator performance is characterized using dynamic pressure measurements and phase-locked Particle Image Velocimetry (PIV) of the combustor's internal flow field in the presence and absence of the active combustion process. Over the range tested, increased momentum of the air inlet jet for a given flow rate improves the actuator performance by increasing bulk velocities and small-scale motions within the chamber, thus yielding net higher flame propagation speed and subsequently faster pressure rise and higher pressure peak. Variation in inlet location that results in swirling flow within the chamber yields higher internal pressures while air flow over the spark ignition site yields lower internal pressures and erratic combustion. Improved refill and combustion processes will lead to enhanced performance combustor designs.
3

Elektrostatický odlučovač pro domovní spalovací zařízení spalující dřevní paliva / Small-scale electrostatic precipitator for domestic wood-burning appliances

Kantor, Tomáš January 2020 (has links)
Master thesis deals with design of electrostatic precipitator for domestic wood-burning appliances. In the opening chapters, principles of electrostatic precipitation are described and a study of existing electrostatic precipitators for domestic combustion devices is made. In the practical part of the thesis, a mathematical model of electrostatic precipitator was created. Based on the mathematical model, electrostatic precipitator was designed and its performance parameters predicted.
4

Analyse de la propagation d’une flamme méthane/air dans un canal étroit bi-dimensionnel avec prise en compte des couplages thermiques / Analysis of a methane/air flame propagating in a two-dimensional small-scale channel with consideration of the conjugate heat transfer

Bioche, Kévin 27 November 2018 (has links)
La stabilisation et la propagation d’une flamme laminaire pré-mélangée méthane/air dans un canal étroit, sont revisitées à partir de simulations numériques. La combustion est modélisée à l’aide d’une chimie et de propriétés de transport complexes, ainsi que du couplage des transferts thermiques à l’interface et dans les parois. Premièrement, une procédure de réduction des mécanismes chimiques adaptée à cette application est appliquée. Deuxièmement, la réponse de la forme de flamme lorsque soumise à diverses conditions thermiques est analysée en termes de vitesse de propagation et de topologie de l’écoulement au voisinage du front de réaction. Troisièmement, le mécanisme de transfert thermique déclenchant la propagation de flamme lorsque celle-ci est soumise à un préchauffage est montré être principalement convectif. Pour finir, le rôle prépondérant de la gravité, via l’action du moment barocline, sur la symétrie des flammes se propageant dans des canaux étroits, est démontré. / The flow physics controlling the stabilization and propagation of a methane/air laminar premixed flame in a narrow channel is revisited from numerical simulations. Combustion is described with complex chemistry and transport properties, along with a coupled simulation of heat transfer at and within the wall. First, a chemistry mechanism reduction procedure fitted to this application is applied. Second, the response of the premixed flame shape to various heat transfer conditions is analyzed in terms of flame propagation velocity and flow topology in the vicinity of the reactive front. Third, the heat transfer mechanism triggering the flame movement when this last is submitted to an upstream wall preheating is revealed to be mainly convective. To finish, the preponderant role of gravity, via an impact on the baroclinic torque, in the symmetry breaking of small-scale channel flames is demonstrated.

Page generated in 0.0773 seconds