• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 26
  • 14
  • 9
  • 4
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 161
  • 161
  • 161
  • 87
  • 39
  • 35
  • 34
  • 32
  • 23
  • 22
  • 22
  • 22
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Interleukin-2 Receptor Alpha Nuclear Localization Impacts Vascular Smooth Muscle Cell Function and Phenotype

Dinh, Kristie Nhi 01 September 2021 (has links)
No description available.
42

Fenotypová plasticita cévních hladkosvalových buněk / Phenotypic plasticity of smooth muscle cells

Misárková, Eliška January 2015 (has links)
Vascular smooth muscle cells display a certain level of phenotype plasticity. Under specific conditions fully differentiated cells are able to undergo dedifferentiation and to restart growth and proliferation. An organ culture method is a useful technique for the analysis of dedifferentiation of vascular smooth muscle cells, because it provides an opportunity for studying the changes in cell phenotype. The aim of this study was to investigate the basic contractile characteristics in rat femoral arteries cultured for different time periods (from one to three days). In addition, the effects of fetal bovine serum (FBS), that contains various growth factors and other biological active molecules, on contractile function were studied. We also tried to attenuate cell dedifferentiation by lowering the calcium influx, because calcium is an important second messenger participating in cell growth and proliferation. To achieve this goal we used cultivation with nifedipine, a voltage-dependent calcium channel inhibitor. The cultivation without FBS slightly decreased arterial contractility, whereas the cultivation with FBS decreased arterial contractility considerably. The major change in contractility of arteries cultivated with FBS occurred approximately within 24 hours of cultivation. The cultivation with...
43

Regulation of Endothelin-1 Production by a Thromboxane a<sub>2</sub> Mimetic in Rat Heart Smooth Muscle Cells

Chua, Chu Chang, Hamdy, Ronald C., Chua, Balvin H.L. 21 August 1996 (has links)
Thromboxane A2 (TXA2) and ET-1 have been known to play important roles in modulating vascular contraction and growth. The present study was undertaken to examine the effect of TXA2 on the induction of endothelin-1 (ET-1) mRNA and protein levels in smooth muscle cells derived from rat heart. U-46619, a stable TXA2 mimetic, superinduced preproET-1 mRNA in the presence of cycloheximide in these cells. This effect could be blocked by SQ-29548, a TXA2/prostaglandin H2 receptor antagonist and by actinomycin D, an RNA synthesis inhibitor. In addition, H7, a protein kinase C inhibitor, could abolish the induction. Transient transfection experiment revealed that the elevated ET-1 mRNA level after U-46619 treatment was a result of the activation of ET-1 gene activity. The elevated ET-1 message level was accompanied by increased ET-1 release into the cultured medium. These results show that the short-lived TXA2 can induce potent and long-lived ET-1. These findings support a potential role for ET-1 in the pathogenesis of coronary atherosclerosis and hypertension evoked by TXA2.
44

Cannabinoid Receptor Type 2 (CB2) Deficiency Alters Atherosclerotic Lesion Formation in Hyperlipidemic Ldlr-Null Mice

Netherland, Courtney D., Pickle, Theresa G., Bales, Alicia, Thewke, Douglas P. 01 November 2010 (has links)
Objective: To determine if cannabinoid receptor 2 (CB2) plays a role in atherosclerosis, we investigated the effects of systemic CB2 gene deletion on hyperlipidemia-induced atherogenesis in low density lipoprotein receptor-deficient (Ldlr-/-) mice. Methods and results: Ldlr-/- and CB2/Ldlr double knockout (CB2-/-Ldlr-/-) mice were fed an atherogenic diet for 8 and 12 weeks. Morphometric analysis revealed no significant difference between the atherosclerotic lesion area in the proximal aortas of Ldlr-/- and CB2-/-Ldlr-/- mice after 8 or 12 weeks on the atherogenic diet. The macrophage and smooth muscle cell (SMC) content, as revealed by immunohistochemical staining, did not differ significantly between Ldlr-/- and CB2-/-Ldlr-/- lesions after 8 weeks. However, after 12 weeks, CB2-/-Ldlr-/- lesions displayed greater macrophage content (86.6±4.1 versus 75.2±7.5%, P<0.05) and SMC content (11.1±5.1 versus 4.2±2.4%, P<0.05) compared to controls. Lesional apoptosis, as determined by in situ TUNEL analysis, was reduced ∼50% in CB2-/-Ldlr-/- lesions after 12 weeks. CB2-/-Ldlr-/- lesions displayed significantly reduced collagen content and increased elastin fiber fragmentation after 12 weeks, which was associated with an ∼57% increase in matrix metalloproteinase 9 (MMP) levels. In vitro, CB2-/- macrophages secreted ∼1.8-fold more MMP9 activity than CB2+/+ macrophages. Conclusions: CB2 receptor deficiency affects atherogenesis in Ldlr-null mice by increasing lesional macrophage and SMC content, reducing lesional apoptosis and altering extracellular matrix components, in part, by upregulating MMP9. These results suggest that pharmacological manipulation of CB2 receptors might exert multiple and complex effects on atherogenesis and plaque stability.
45

Deletion of IκB-Kinase β in Smooth Muscle Cells Induces Vascular Calcification Through β-Catenin-Runt-Related Transcription Factor 2 Signaling / 平滑筋におけるIKKβ欠損はβカテニン-Runx2のシグナル伝達を介して血管石灰化を促進する

Isehaq, Saif Said Al-Huseini 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医科学) / 甲第21029号 / 医科博第90号 / 新制||医科||6(附属図書館) / 京都大学大学院医学研究科医科学専攻 / (主査)教授 山下 潤, 教授 湊谷 謙司, 教授 原田 浩 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
46

Understanding vascular calcification through the lens of canonical WNT signaling

McNeel, KarLee 12 May 2023 (has links) (PDF)
Every 37 seconds, someone in the United States dies from cardiovascular disease. Vascular calcification is one of the underlying causes of these fatal events. Medial calcification develops following arteriosclerosis, or hardening of the arteries. Medial calcification is characterized by the deposition of hydroxyapatite in the medial layer of the arteries after normal vascular smooth muscle cells undergo a phenotypic switch to resemble osteoblast-like cells. It is hypothesized that this switch is caused by the wingless related (WNT)-Signaling pathway. The WNT-Signaling pathway, upon activation, causes the upregulation of osteogenic markers for the development of osteoblast-like cells. Current treatments alleviate consequences of calcification but do not address the disease. Due to a lack of cures for calcification, a novel therapy for this disease is overdue. By studying human aortic smooth muscle cells and confirming the role of WNT-Signaling as it relates to calcification, a possible therapeutic target for calcification can be identified.
47

The Role of Endocannabinoids in Atherosclerosis

Matthews, Anberitha Tyiona 11 December 2015 (has links)
Cardiovascular disease leads in morbidity and mortality in Western societies with no known cure. NADPH oxidase (Nox) contributes to atherosclerosis through the indirect activation of macrophages leading to the internalization of oxidized low density lipoproteins (oxLDL). Chronic inflammation in activated macrophages contributes to atherosclerosis. Because macrophages are positioned at the cross-roads of lipid metabolism in vessel walls, they are important in the cellular pathology of atherosclerosis. Components of the endocannabinoid (eCB) system are vital to atherosclerotic development, since the eCB system has been found to play an important role in the amelioration of atherosclerosis. The eCB system has several components, including the G-protein-coupled cannabinoid receptors (CB1 and CB2); their endogenous ligands, 2-arachidonoylglycerol (2-AG) and anandamide (AEA); and biosynthetic enzymes that produce and degrading these compounds. CB2 signaling has been shown to upregulate immunoprotective and anti-oxidative pathways, whereas CB1 signaling has opposite effects. We hypothesized a mechanistic link between scavenger receptor activation and Nox activity, which leads to enhanced 2-AG biosynthesis via a signaling pathway that activates diacylglycerol lipase beta (DAGLB). Activation of CB2-mediated signaling by enhanced “eCB tone” can potentially reduce oxidative stress in macrophages. The released 2-AG is subsequently catabolized hydrolytic enzymes, leading to enhanced 2-AGbiosynthesis via activated DAGLB. We first proved that macrophage treated with oxLDL can activate Nox and increase reactive oxygen species production. We used human and mouse macrophages to demonstrate cause and effect. Secondly, we demonstrated that increased levels of superoxide causes enhanced 2-AG biosynthesis within the macrophage, and that upregulation in eCB production is an adaptive response to oxidative stress. Finally, we identified and quantified the serine hydrolases found in smooth muscle cells (SMCs) using an activity-based protein profiling (ABPP)-MudPIT approach that our laboratory has previously done using human macrophages. Additionally, the catabolism of 2-AG by primary SMCs was explored to demonstrate SMCs can hydrolyze 2-AG to its metabolites arachidonic acid and glycerol by the known hydrolytic enzymes. We demonstrated that enhancing endocannabinoid tone within the vessel wall is a valuable strategy to reduce the occurrence of inflammation that leads to atherosclerosis.
48

Development of an in vitro model to study the impact of substrate strain on uterine smooth muscle cell hypertrophy

Marr, Elizabeth E. 31 May 2022 (has links)
In 2018, 1 in every 10 infants born in the United States was born preterm. The majority of neonatal deaths and nearly a third of infant deaths that occur are linked to preterm birth. Preterm birth is initiated when the quiescent state of the uterus ends prematurely, leading to contractions and parturition beginning as early as 32 weeks, though the origins are not well understood. Tocolytics are pharmaceuticals utilized to postpone preterm labor, but currently only manage to prolong pregnancy for up to 48 hours and have not proven effective in completely preventing preterm delivery. To enable research and discovery of therapeutics with potential to better address preterm birth, the capability to study isolated cell processes of pregnant uterine tissue in vitro is needed. Our development of an in vitro model of the myometrium utilizing uterine myocytes - uterine smooth muscle cells (uSMCs) responsible for contractions - provides a platform to examine the cellular mechanisms of late-stage pregnancy potentially involved in preterm birth. In this thesis, we discuss the optimized culture of uterine SMCs on a flexible polydimethylsiloxane (PDMS) substrate functionalized using a cationic solution, Poly-L-lysine (PLL), followed by extracellular matrix (ECM) protein coating. Using the model we developed, we then exposed this elastic substrate with uterine SMCs to different strain rates in order to investigate the impact of mechanical strain parameters on uterine SMC hypertrophy in the uterus during late-stage pregnancy. It was found that PLL and ECM protein coatings significantly impact cell morphology and density in unstrained substrates. It was also observed that when exposed to strain conditions, strain significantly increased hypertrophic morphological traits in select conditions. These results indicate that both surface and mechanical properties of in vitro systems impact uterine SMC phenotype, offering further understanding of cellular pathways involved in the uterus under mechanical load. / 2024-05-31T00:00:00Z
49

Adenosine and Vascular Homeostasis

Simard, Trevor 30 May 2023 (has links)
Despite advancements in percutaneous coronary intervention, stents are still limited by a 2% annual rate of in-stent restenosis (ISR) related to neointimal (NI) tissue proliferation. Efforts to prevent ISR formation remain the focus of ongoing work. Adenosine (ADO) is a purine nucleoside with integral roles in vascular homeostasis, though it has limited clinical application. ADO signals primarily via four receptors with ADO receptor-A2B (ADOR-A2B) considered to play an integral role in vascular healing. Dipyridamole (DP) is a commercially approved therapy known to improve vascular events and modulate adenosine biology. Our objectives with this study included (i) assessing whether ADO could serve as a biomarker of cardiac events; (ii) determine if DP could mitigate NI formation in a pre-clinical stent model; and, (iii) quantify the mechanisms of DP-related vasculoprotection, specifically related to ADOR-A2B. We assessed the analytic and biologic variability of circulating ADO levels in humans and demonstrated that circulating ADO was not predictive of cardiac events at one year following invasive coronary angiography. We then assessed whether modulation of adenosine biology with DP had therapeutic efficacy in a pre-clinical model. Utilizing meta-analysis, we confirmed the sustained effects of DP on vascular patency rates in both pre-clinical and clinical studies. We refined a pre-clinical rabbit model of stent implantation with assessment of stent healing by intravascular optical coherence tomography – with excellent translation to clinical observations. We then assessed DP in a pre-clinical model, demonstrating reduction in ISR and improved stent healing with DP compared to control. Last, we sought to elucidate the mechanisms behind the observed DP effects, specifically related to ADOR-A2B. In vivo, DP therapy demonstrated reduced NI smooth muscle cell (SMC) content. In vitro assessment of DP demonstrated dose-dependent inhibition of SMC proliferation and migration with alteration of SMC phenotypic switching, while selective modulation of ADOR-A2B and ADOR-A2B knockdown support an ADOR-A2B-mediated component to the observed DP effects. Adenosine biology is integral to vascular homeostasis. In humans, circulating adenosine levels in humans are not predictive of one year cardiovascular events. However, DP may improve vascular healing post stent implantation and warrants clinical evaluation for stent healing. The observed DP benefits may, in part, stem from ADOR-A2B modulation. ADOR-A2B is a viable target for assessment of small molecule modulation as a novel therapeutic target to improve vascular outcomes.
50

Controlled Delivery of TGF-β1 from PLGA Nanoparticles

Vaidya, Pratik K. 14 December 2012 (has links)
No description available.

Page generated in 0.0778 seconds