Spelling suggestions: "subject:"snord116"" "subject:"snord116p""
1 |
Non-coding RNA genes lost in Prader-Willi Syndrome stabilize target RNAsKocher, Matthew Afshin 27 May 2021 (has links)
Prader-Willi Syndrome (PWS) is a genetic disease that results in abnormal hormone levels, developmental delay, intellectual disability, hypogonadism, and excessive appetite. The disease is caused by a de novo genetic deletion in chromosome 15. While many of the deleted genes have been identified, there is little known about their molecular function. There is evidence that a cluster of non-coding RNA genes in the deleted region known as the SNORD116 genes may be the most critical genes deleted in Prader-Willi Syndrome. It is unknown what the SNORD116 genes do at the molecular level, but recent evidence suggests they regulate the expression of other genes involved in the neuroendocrine system. Specifically, the SNORD116 gene is implicated in regulation of NHLH2, a transcription factor gene which plays a key role in development, hormonal regulation, and body weight. In this study we identify phylogenetically conserved regions of SNORD116 and predict interactions with its potential downstream RNA targets. We show that mouse Snord116 post-transcriptionally increases Nhlh2 RNA levels dependent on its 3'UTR and protects it from degradation within 45 minutes of its transcription. Additionally, a single nucleotide variant within Nhlh2 at the predicted Snord116 interaction site may disrupt Snord116's protective effect. This is the first observation of a molecular mechanism for Snord116, identifying its role in RNA stability, and leads us closer to understanding Prader-Willi Syndrome and finding a possible treatment. However, Snord116 in vitro knockdown or paternally inherited in vivo deletion fail to detect differential expression of Nhlh2, likely due to missing the key timepoint of Snord116 regulatory effects on Nhlh2 RNA soon after its transcriptional stimulation, and dependent on leptin signals. Furthermore, the hypothalamic mRNA expression profile of PWS mouse models fed a nutraceutical dietary supplement of conjugated linoleic acid reveals minimal overall changes, while the effect of diet may be stronger than genotype and potentially changes gene expression of metabolic molecular pathways. / Doctor of Philosophy / Prader-Willi Syndrome is a genetic disease that results in abnormal hormone levels, slow development, intellectual disability, gonad deficiency, and excessive appetite. The disease is caused by a genetic deletion in chromosome 15 that is almost always a spontaneous mutation not inherited from the parents. While many of the deleted genes have been identified, there is little known about what their molecular function is. There is evidence that a cluster of genes in the deleted region known as the SNORD116 genes may be the most critical genes deleted in Prader-Willi Syndrome. It is unknown what the SNORD116 genes do at the molecular level, but recent evidence suggests that it regulates other genes involved in the hormone system. Specifically, the SNORD116 gene is implicated to regulate the levels of NHLH2, a gene which plays a key role in development, hormonal regulation, and body weight. In this study we identify key regions of SNORD116 and predict interactions with its potential downstream targets. We show that SNORD116 increases NHLH2 levels and slows its degradation at the RNA transcript level. This is the first observation of a molecular mechanism for SNORD116 and leads us closer to understanding Prader-Willi Syndrome and finding a possible treatment. However, other mouse models of Snord116 deletion fail to find differences in Nhlh2. This is likely due to missing a brief key timepoint and hormonal signal when Nhlh2 is most subject to Snord116's effects. Furthermore, PWS mouse models fed a supplement intended for weight loss leads to mild overall gene expression changes in the hypothalamus, a brain region that regulates many hormonal signals including appetite and energy balance. The effect of diet may be stronger than genotype in this brain region, with diet potentially changing the activity of metabolic molecular pathways.
|
2 |
Estudo da expressão diferencial de genes localizados no segmento cromossômico 15q11-q13 em pacientes com as síndromes de Angelman e Prader-Willi / Analysis of imprinted genes expression on chromosome region 15q11-q13 in Angelman and Prader-Willi patientsCruvinel, Estela Mitie 26 May 2015 (has links)
A síndrome de Prader Willi (PWS) é uma doença de neurodesenvolvimento; a principal hipótese de causa de PWS é a ausência da expressão de SNORD116. O SNORD116 fica na região 15q11-q13 que apresenta vários genes com imprinting genômico e é conhecida por ser controlada pela região de controle de imprinting PWS (PWS-IC) que se localiza sobreposta à região promotora e ao exon 1 do gene SNRPN. Em camundongos, uma proteína zinc finger (Zfp57) foi descrita como importante para o estabelecimento e manutenção do imprinting no Snrpn. Através de análise do ENCODE do Genome Browser, verificamos que outra proteína zinc finger (ZNF274) se liga ao SNORD116. ZNF274 é conhecida por formar um complexo com TRIM28 e SETDB1 que inibe a expressão através da trimetilação da lisina 9 na histona 3 (H3K9me3). No atual estudo mostramos que ZNF274 se liga ao SNORD116 preferencialmente ao alelo materno nas células-tronco pluripotente induzidas (iPSCs). Adicionalmente, as proteínas TRIM28 e SETDB1, que formam um complexo com a ZNF274, estão presentes na região do SNORD116, e a modificação H3K9me3 ocorre preferencialmente no alelo materno nas iPSCs. Na análise funcional, mostramos que o knockdown de SETDB1 isoladamente ou combinado com o knockdown de ZNF274 causa aumento na expressão de SNRPN e SNORD116 nas iPSCs. Além disso, ocorre redução do H3K9me3 e aumento da modificação relacionada à ativação da transcrição, H3K4me2 (dimetilação da lisina 4 na histona 3), na PWS-IC. Os knockdowns também afetam a metilação de DNA, ocasionando o aumento de 5-hidroximetliação de citosinas na PWS-IC. Em outros tipos celulares estudados, neurônios derivados de iPSCs e SHEDs, ZNF274 e a modificação H3K9me3 ocorrem em ambos os alelos dentro do SNORD116. É possível que, nas iPSCs, este complexo proteja a região imprintada da desmetilação do DNA de proteína(s) que atue(m) nessa região somente em células pluripotentes. Nossos achados possibilitam melhor compreensão dos mecanismos envolvidos no imprinting da região 15q11-q13, principalmente do SNORD116, e, consequentemente, disponibiliza novas ferramentas para o desenvolvimento de futuras terapias para PWS. / Prader-Willi syndrome (PWS) is a neurodevelopmental disorder. Loss of paternal copies of the cluster of SNORD116 C/D box snoRNAs and their host transcript, 116HG, on human chromosome 15q11-q13 imprinted region is considered to be the major responsible for PWS. PWS-imprinting center (PWS-IC) regulates 15q11-q13 imprinting. PWS-IC is located upstream and in the exon 1 of SNURF-SNRPN gene. In mice, Zfp57 plays an important role in establishment and maintenance of Snrpn imprinting. In human, ENCODE database indicates that ZNF274 binds to SNORD116. Moreover, ZNF274 are C2H2/KRAB zinc finger proteins as Zfp57. We have investigated the mechanism of repression of the maternal SNORD116. Here, we report that the ZNF274, in association with the histone H3 lysine 9 (H3K9) methyltransferase SETDB1, is part of a complex that binds to the silent maternal but not to the active paternal alleles in induced pluripotent stem cells (iPSCs). Knockdown of SETDB1 in PWS-specific iPSCs causes a decrease in the accumulation of H3K9 trimethylation (H3K9me3) at SNORD116. We also show that upon knockdown of SETDB1 in PWS-specific iPSCs, expression of maternally silenced 116HG RNA is partially restored. SETDB1 knockdown in PWS iPSCs also disrupts DNA methylation at the PWS-IC where a decrease in 5-methylcytosine is observed in association with a concomitant increase in 5-hydroxymethylcytosine. In iPSCs-derived neurons and stem cells from human exfoliated teeth (SHEDs) ZNF274/SETDB1 complex binding and H3K9me3 modification occur in both alleles. These observations suggest that the ZNF274/SETDB1 complex bound to the SNORD116 cluster may protect the PWS-IC from DNA demethylation during early development, as indicated by iPSCs. Our findings reveal novel epigenetic mechanisms that function to repress the maternal 15q11-q13 region. The better understanding of epigenetic mechanisms provides new tools for future therapy research.
|
3 |
Estudo da expressão diferencial de genes localizados no segmento cromossômico 15q11-q13 em pacientes com as síndromes de Angelman e Prader-Willi / Analysis of imprinted genes expression on chromosome region 15q11-q13 in Angelman and Prader-Willi patientsEstela Mitie Cruvinel 26 May 2015 (has links)
A síndrome de Prader Willi (PWS) é uma doença de neurodesenvolvimento; a principal hipótese de causa de PWS é a ausência da expressão de SNORD116. O SNORD116 fica na região 15q11-q13 que apresenta vários genes com imprinting genômico e é conhecida por ser controlada pela região de controle de imprinting PWS (PWS-IC) que se localiza sobreposta à região promotora e ao exon 1 do gene SNRPN. Em camundongos, uma proteína zinc finger (Zfp57) foi descrita como importante para o estabelecimento e manutenção do imprinting no Snrpn. Através de análise do ENCODE do Genome Browser, verificamos que outra proteína zinc finger (ZNF274) se liga ao SNORD116. ZNF274 é conhecida por formar um complexo com TRIM28 e SETDB1 que inibe a expressão através da trimetilação da lisina 9 na histona 3 (H3K9me3). No atual estudo mostramos que ZNF274 se liga ao SNORD116 preferencialmente ao alelo materno nas células-tronco pluripotente induzidas (iPSCs). Adicionalmente, as proteínas TRIM28 e SETDB1, que formam um complexo com a ZNF274, estão presentes na região do SNORD116, e a modificação H3K9me3 ocorre preferencialmente no alelo materno nas iPSCs. Na análise funcional, mostramos que o knockdown de SETDB1 isoladamente ou combinado com o knockdown de ZNF274 causa aumento na expressão de SNRPN e SNORD116 nas iPSCs. Além disso, ocorre redução do H3K9me3 e aumento da modificação relacionada à ativação da transcrição, H3K4me2 (dimetilação da lisina 4 na histona 3), na PWS-IC. Os knockdowns também afetam a metilação de DNA, ocasionando o aumento de 5-hidroximetliação de citosinas na PWS-IC. Em outros tipos celulares estudados, neurônios derivados de iPSCs e SHEDs, ZNF274 e a modificação H3K9me3 ocorrem em ambos os alelos dentro do SNORD116. É possível que, nas iPSCs, este complexo proteja a região imprintada da desmetilação do DNA de proteína(s) que atue(m) nessa região somente em células pluripotentes. Nossos achados possibilitam melhor compreensão dos mecanismos envolvidos no imprinting da região 15q11-q13, principalmente do SNORD116, e, consequentemente, disponibiliza novas ferramentas para o desenvolvimento de futuras terapias para PWS. / Prader-Willi syndrome (PWS) is a neurodevelopmental disorder. Loss of paternal copies of the cluster of SNORD116 C/D box snoRNAs and their host transcript, 116HG, on human chromosome 15q11-q13 imprinted region is considered to be the major responsible for PWS. PWS-imprinting center (PWS-IC) regulates 15q11-q13 imprinting. PWS-IC is located upstream and in the exon 1 of SNURF-SNRPN gene. In mice, Zfp57 plays an important role in establishment and maintenance of Snrpn imprinting. In human, ENCODE database indicates that ZNF274 binds to SNORD116. Moreover, ZNF274 are C2H2/KRAB zinc finger proteins as Zfp57. We have investigated the mechanism of repression of the maternal SNORD116. Here, we report that the ZNF274, in association with the histone H3 lysine 9 (H3K9) methyltransferase SETDB1, is part of a complex that binds to the silent maternal but not to the active paternal alleles in induced pluripotent stem cells (iPSCs). Knockdown of SETDB1 in PWS-specific iPSCs causes a decrease in the accumulation of H3K9 trimethylation (H3K9me3) at SNORD116. We also show that upon knockdown of SETDB1 in PWS-specific iPSCs, expression of maternally silenced 116HG RNA is partially restored. SETDB1 knockdown in PWS iPSCs also disrupts DNA methylation at the PWS-IC where a decrease in 5-methylcytosine is observed in association with a concomitant increase in 5-hydroxymethylcytosine. In iPSCs-derived neurons and stem cells from human exfoliated teeth (SHEDs) ZNF274/SETDB1 complex binding and H3K9me3 modification occur in both alleles. These observations suggest that the ZNF274/SETDB1 complex bound to the SNORD116 cluster may protect the PWS-IC from DNA demethylation during early development, as indicated by iPSCs. Our findings reveal novel epigenetic mechanisms that function to repress the maternal 15q11-q13 region. The better understanding of epigenetic mechanisms provides new tools for future therapy research.
|
Page generated in 0.0223 seconds