• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo da expressão diferencial de genes localizados no segmento cromossômico 15q11-q13 em pacientes com as síndromes de Angelman e Prader-Willi / Analysis of imprinted genes expression on chromosome region 15q11-q13 in Angelman and Prader-Willi patients

Cruvinel, Estela Mitie 26 May 2015 (has links)
A síndrome de Prader Willi (PWS) é uma doença de neurodesenvolvimento; a principal hipótese de causa de PWS é a ausência da expressão de SNORD116. O SNORD116 fica na região 15q11-q13 que apresenta vários genes com imprinting genômico e é conhecida por ser controlada pela região de controle de imprinting PWS (PWS-IC) que se localiza sobreposta à região promotora e ao exon 1 do gene SNRPN. Em camundongos, uma proteína zinc finger (Zfp57) foi descrita como importante para o estabelecimento e manutenção do imprinting no Snrpn. Através de análise do ENCODE do Genome Browser, verificamos que outra proteína zinc finger (ZNF274) se liga ao SNORD116. ZNF274 é conhecida por formar um complexo com TRIM28 e SETDB1 que inibe a expressão através da trimetilação da lisina 9 na histona 3 (H3K9me3). No atual estudo mostramos que ZNF274 se liga ao SNORD116 preferencialmente ao alelo materno nas células-tronco pluripotente induzidas (iPSCs). Adicionalmente, as proteínas TRIM28 e SETDB1, que formam um complexo com a ZNF274, estão presentes na região do SNORD116, e a modificação H3K9me3 ocorre preferencialmente no alelo materno nas iPSCs. Na análise funcional, mostramos que o knockdown de SETDB1 isoladamente ou combinado com o knockdown de ZNF274 causa aumento na expressão de SNRPN e SNORD116 nas iPSCs. Além disso, ocorre redução do H3K9me3 e aumento da modificação relacionada à ativação da transcrição, H3K4me2 (dimetilação da lisina 4 na histona 3), na PWS-IC. Os knockdowns também afetam a metilação de DNA, ocasionando o aumento de 5-hidroximetliação de citosinas na PWS-IC. Em outros tipos celulares estudados, neurônios derivados de iPSCs e SHEDs, ZNF274 e a modificação H3K9me3 ocorrem em ambos os alelos dentro do SNORD116. É possível que, nas iPSCs, este complexo proteja a região imprintada da desmetilação do DNA de proteína(s) que atue(m) nessa região somente em células pluripotentes. Nossos achados possibilitam melhor compreensão dos mecanismos envolvidos no imprinting da região 15q11-q13, principalmente do SNORD116, e, consequentemente, disponibiliza novas ferramentas para o desenvolvimento de futuras terapias para PWS. / Prader-Willi syndrome (PWS) is a neurodevelopmental disorder. Loss of paternal copies of the cluster of SNORD116 C/D box snoRNAs and their host transcript, 116HG, on human chromosome 15q11-q13 imprinted region is considered to be the major responsible for PWS. PWS-imprinting center (PWS-IC) regulates 15q11-q13 imprinting. PWS-IC is located upstream and in the exon 1 of SNURF-SNRPN gene. In mice, Zfp57 plays an important role in establishment and maintenance of Snrpn imprinting. In human, ENCODE database indicates that ZNF274 binds to SNORD116. Moreover, ZNF274 are C2H2/KRAB zinc finger proteins as Zfp57. We have investigated the mechanism of repression of the maternal SNORD116. Here, we report that the ZNF274, in association with the histone H3 lysine 9 (H3K9) methyltransferase SETDB1, is part of a complex that binds to the silent maternal but not to the active paternal alleles in induced pluripotent stem cells (iPSCs). Knockdown of SETDB1 in PWS-specific iPSCs causes a decrease in the accumulation of H3K9 trimethylation (H3K9me3) at SNORD116. We also show that upon knockdown of SETDB1 in PWS-specific iPSCs, expression of maternally silenced 116HG RNA is partially restored. SETDB1 knockdown in PWS iPSCs also disrupts DNA methylation at the PWS-IC where a decrease in 5-methylcytosine is observed in association with a concomitant increase in 5-hydroxymethylcytosine. In iPSCs-derived neurons and stem cells from human exfoliated teeth (SHEDs) ZNF274/SETDB1 complex binding and H3K9me3 modification occur in both alleles. These observations suggest that the ZNF274/SETDB1 complex bound to the SNORD116 cluster may protect the PWS-IC from DNA demethylation during early development, as indicated by iPSCs. Our findings reveal novel epigenetic mechanisms that function to repress the maternal 15q11-q13 region. The better understanding of epigenetic mechanisms provides new tools for future therapy research.
2

Rôle d'histones methyltransférases spécifiques de H3K9 dans l'équilibre prolifération et différenciation cellulaire / Role of specific histones methyltransferases of H3K9 in the balance between cell proliferation and differenciation

Battisti, Valentine 10 December 2013 (has links)
Chez les eucaryotes, l’expression des gènes dépend en partie du degré de compaction de la chromatine. La structure chromatinienne est régulée par des marques dites épigénétiques,telles que les modifications post-traductionnelles des protéines structurelles de la chromatine, les histones. Ainsi, la méthylation de la lysine 9 de l’histone H3 (H3K9) sur le promoteur des gènes est essentiellement associée à la répression de la transcription. H3K9 est méthylée par différentes enzymes appelées lysine méthyltransférases (KMTs). L’objectif principal de mon projet de thèse a été de mieux comprendre le rôle de principales KMTs de H3K9, que sontG9a, GLP, Suv39h1 et SETDB1, dans la régulation de l’équilibre entre prolifération et différenciation terminale. Pour cela, j’ai utilisé le modèle de différenciation terminale de cellules du muscle squelettique. En effet, durant la différenciation terminale, les myoblastes arrêtent de proliférer et fusionnent entre eux pour former de longues cellules multi nucléées que sont les myotubes. Ce processus implique, d’une part, l’expression des gènes de différenciation musculaire et, d’autre part, la répression irréversible des gènes associés à la prolifération cellulaire. L’introduction bibliographique de ce travail de thèse est séparée en trois chapitres. Le premier chapitre porte sur la chromatine et ses modifications post-traductionnelles. Le second s’attache à décrire les rôles de la méthylation de H3K9 et, en particulier, des quatre KMTs sur lesquelles j’ai travaillé durant ma thèse : G9a, GLP, SETDB1 et Suv39h1. Dans le troisième chapitre, je présente le modèle de la différenciation terminale du muscle squelettique. Dans la partie "Résultats", je décris deux des principales études que j’ai menées durant ma thèse. La première porte sur les rôles antagonistes de G9a et GLP. La seconde porte sur le rôle de SETDB1 durant la différenciation musculaire. Les résultats que j’ai obtenus sont discutés dans cette partie. Je conclus ce manuscrit en discutant mes résultats de manière plus générale et en proposant des perspectives à long terme. Enfin, une annexe présentera les autres articles de recherche auxquels j’ai participé pendant ma thèse. / In eukaryotes, gene expression partly relies on chromatin compaction degree. Chromatin status is controlled by epigenetic marks, such as histones (chromatin structural proteins) posttranslational modifications. As an example, histone H3 lysine 9 (H3K9) methylation on gene promoters is mainly associated with transcriptional repression. H3K9 is methylated by several enzymes called lysine methyltransferases (KMTs). The aim of my thesis project was to understand the role of the H3K9 KMTs, G9a, GLP, Suv39h1 and SETDB1 in regulating the balance between proliferation and terminal differentiation. For this purpose, I used skeletal muscle terminal differentiation as model. Upon muscle terminal differentiation, myoblasts exit, in an irreversible way, from the cell cycle and under go differentiation where cells fusion and form myotubes. During this process, cell cycle genes are permanently silenced and muscle specific genes are activated. Thesis introduction is divided into three chapters. The first chapter focuses on chromatin and post-translational modifications. The second chapter describes H3K9 methylation characteristics and the role of the four KMTs that I studied during my thesis project: G9a,GLP, Suv39h1 and SETDB1. In the third chapter, the skeletal muscle terminal differentiation model is described in details. Results section reports my two major studies outcomes and their discussion. The first concerns the antagonistic roles of G9a and GLP regarding the muscle terminal differentiation and the second focuses on the role of SETDB1 during muscle differentiation. Finally, I conclude this manuscript by a plainer discussion followed by long term perspectives and an appendix presents other research articles, in which I collaborated during my PhD.
3

Estudo da expressão diferencial de genes localizados no segmento cromossômico 15q11-q13 em pacientes com as síndromes de Angelman e Prader-Willi / Analysis of imprinted genes expression on chromosome region 15q11-q13 in Angelman and Prader-Willi patients

Estela Mitie Cruvinel 26 May 2015 (has links)
A síndrome de Prader Willi (PWS) é uma doença de neurodesenvolvimento; a principal hipótese de causa de PWS é a ausência da expressão de SNORD116. O SNORD116 fica na região 15q11-q13 que apresenta vários genes com imprinting genômico e é conhecida por ser controlada pela região de controle de imprinting PWS (PWS-IC) que se localiza sobreposta à região promotora e ao exon 1 do gene SNRPN. Em camundongos, uma proteína zinc finger (Zfp57) foi descrita como importante para o estabelecimento e manutenção do imprinting no Snrpn. Através de análise do ENCODE do Genome Browser, verificamos que outra proteína zinc finger (ZNF274) se liga ao SNORD116. ZNF274 é conhecida por formar um complexo com TRIM28 e SETDB1 que inibe a expressão através da trimetilação da lisina 9 na histona 3 (H3K9me3). No atual estudo mostramos que ZNF274 se liga ao SNORD116 preferencialmente ao alelo materno nas células-tronco pluripotente induzidas (iPSCs). Adicionalmente, as proteínas TRIM28 e SETDB1, que formam um complexo com a ZNF274, estão presentes na região do SNORD116, e a modificação H3K9me3 ocorre preferencialmente no alelo materno nas iPSCs. Na análise funcional, mostramos que o knockdown de SETDB1 isoladamente ou combinado com o knockdown de ZNF274 causa aumento na expressão de SNRPN e SNORD116 nas iPSCs. Além disso, ocorre redução do H3K9me3 e aumento da modificação relacionada à ativação da transcrição, H3K4me2 (dimetilação da lisina 4 na histona 3), na PWS-IC. Os knockdowns também afetam a metilação de DNA, ocasionando o aumento de 5-hidroximetliação de citosinas na PWS-IC. Em outros tipos celulares estudados, neurônios derivados de iPSCs e SHEDs, ZNF274 e a modificação H3K9me3 ocorrem em ambos os alelos dentro do SNORD116. É possível que, nas iPSCs, este complexo proteja a região imprintada da desmetilação do DNA de proteína(s) que atue(m) nessa região somente em células pluripotentes. Nossos achados possibilitam melhor compreensão dos mecanismos envolvidos no imprinting da região 15q11-q13, principalmente do SNORD116, e, consequentemente, disponibiliza novas ferramentas para o desenvolvimento de futuras terapias para PWS. / Prader-Willi syndrome (PWS) is a neurodevelopmental disorder. Loss of paternal copies of the cluster of SNORD116 C/D box snoRNAs and their host transcript, 116HG, on human chromosome 15q11-q13 imprinted region is considered to be the major responsible for PWS. PWS-imprinting center (PWS-IC) regulates 15q11-q13 imprinting. PWS-IC is located upstream and in the exon 1 of SNURF-SNRPN gene. In mice, Zfp57 plays an important role in establishment and maintenance of Snrpn imprinting. In human, ENCODE database indicates that ZNF274 binds to SNORD116. Moreover, ZNF274 are C2H2/KRAB zinc finger proteins as Zfp57. We have investigated the mechanism of repression of the maternal SNORD116. Here, we report that the ZNF274, in association with the histone H3 lysine 9 (H3K9) methyltransferase SETDB1, is part of a complex that binds to the silent maternal but not to the active paternal alleles in induced pluripotent stem cells (iPSCs). Knockdown of SETDB1 in PWS-specific iPSCs causes a decrease in the accumulation of H3K9 trimethylation (H3K9me3) at SNORD116. We also show that upon knockdown of SETDB1 in PWS-specific iPSCs, expression of maternally silenced 116HG RNA is partially restored. SETDB1 knockdown in PWS iPSCs also disrupts DNA methylation at the PWS-IC where a decrease in 5-methylcytosine is observed in association with a concomitant increase in 5-hydroxymethylcytosine. In iPSCs-derived neurons and stem cells from human exfoliated teeth (SHEDs) ZNF274/SETDB1 complex binding and H3K9me3 modification occur in both alleles. These observations suggest that the ZNF274/SETDB1 complex bound to the SNORD116 cluster may protect the PWS-IC from DNA demethylation during early development, as indicated by iPSCs. Our findings reveal novel epigenetic mechanisms that function to repress the maternal 15q11-q13 region. The better understanding of epigenetic mechanisms provides new tools for future therapy research.
4

Contrôle épigénétique de la biologie des lymphocytes T CD4 / Epigenetic control of CD4 T cell biology

Malbec, Agathe 17 December 2018 (has links)
Les lymphocytes T CD4 naïfs sont des cellules plastiques, capables de moduler finement leur programmation selon les signaux environnementaux qu'ils intègrent. Ils adaptent ainsi leur phénotype et leur fonction au type de danger Lors d'une infection par un agent pathogène intracellulaire par exemple, ils acquièrent un phénotype Th1 sous l'influence de médiateurs solubles tels que l'IL-12 et l' IFN-γ. Ces signaux mobilisent un set restreint de facteurs de transcription, coordonné par Tbet, qui programment la cellule afin qu'elle induise l'élimination du danger par des mécanismes impliquant une production massive d'IFN-γ. En réponse à des allergènes ou à des parasites extracellulaires, les lymphocytes T peuvent aussi acquérir un phénotype Th2, caractérisé par l'expression du facteur de transcription Gata-3 et par la production d'IL-4, d'IL-5 et d'IL-13. Afin de garantir la stabilité des lignages, ces processus de différenciation peuvent s'accompagner d'une perte de potentialité. Contrairement aux cellules T naïves, les cellules Th1 sont par exemple incapables d'allumer le programme d'expression génique Th2 en présence d'IL-4, et les lymphocytes Th2 verrouillent le programme Th1. Si nous savons aujourd'hui que l'acquisition des fonctions effectrices, comme l'équilibre entre détermination cellulaire et plasticité, sont régulés par des mécanismes épigénétiques, la plupart des acteurs moléculaires qui contrôlent la programmation des lymphocytes T au niveau de la chromatine reste encore à identifier. Durant ma thèse, j'ai étudié le rôle de la lysine méthyltransférase SETDB1, qui catalyse la di- ou tri-méthylation de la lysine 9 de l'histone 3 (H3K9me3), dans la différenciation des lymphocytes T CD4. Il avait déjà été proposé qu'H3K9me3 ait un impact sur la programmation de ces cellules en réponse aux signaux de l'environnement, mais personne n'avait encore étudié le rôle de SETDB1 dans ces processus lorsque j'ai commencé ma thèse. A l'aide d'une lignée murine déficiente pour SETDB1 spécifiquement dans les lymphocytes T, nous avons montré in vitro et in vivo que la balance Th1/Th2 est fortement augmentée en l'absence de l'enzyme, et que cette dérégulation résulte d'une perte de répression du réseau génique Th1. [...] / Upon activation, naïve CD4 T cells differentiate into distinct helper or regulatory T cell subsets depending on environmental signals received. This process relies on complex and lineage-specific gene expression programs whose dynamics and stability are regulated at the level of the chromatin. The epigenetic pathways involved, however, remain largely unknown. Here, we report that the histone methyltransferase SETDB1 critically controls the Th1 gene expression program. SETDB1-deficient naïve CD4 T cells show exacerbated Th1 priming, and when exposed to a Th1-instructive signal, SETDB1-deficient Th2 cells cross lineage boundaries and transdifferentiate into Th1 cells. Surprisingly, SETDB1 does not appear to control Th1 gene promoter activity. Instead, it deposits the repressive H3K9me3 mark at a restricted and cell-type specific set of endogenous retroviruses (ERVs) strongly associated with genes involved in immune processes. Refined bioinformatic analyses indicated that these retrotransposons either flank and repress Th1 gene cis-regulatory elements or behave themselves as Th1 gene enhancers. In conclusion, H3K9me3 deposition by SETDB1 ensures T cell lineage integrity by repressing a repertoire of ERVs that have been exapted into cis-regulatory modules to shape and control the Th1 gene network.
5

Aneuploidy compensatory mechanisms and genome-wide regulation of gene expression in Drosophila melanogaster

Lundberg, Lina January 2013 (has links)
Stimulation or repression of gene expression by genome-wide regulatory mechanisms is an important epigenetic regulatory function which can act to efficiently regulate larger regions or specific groups of genes, for example by compensating for loss or gain of chromosome copy numbers. In Drosophila melanogaster there are two known chromosome-wide regulatory systems; the MSL complex, which mediates dosage compensation of the single male X-chromosome and POF, which stimulates expression from the heterochromatic 4th chromosome. POF also interacts with the heterochromatin inducing protein HP1a, which represses expression from the 4th chromosome but which also has been assigned stimulatory functions. In addition to these two, there is another more elusive and less well-characterized genome-wide mechanism called buffering, which can act to balance transcriptional output of aneuploidy regions of the genome (i.e. copy number variation). In my thesis, I describe the presence of a novel physical link between dosage compensation and heterochromatin; mediate by two female-specific POF binding sites, proximal to roX1 and roX2 on the X chromosome (the two non-coding RNAs in the MSL complex). These sites can also provide clues to the mechanisms behind targeting of chromosome-specific proteins. Furthermore, to clarify the conflicting reports about the function of HP1a, I have suggested a mechanism in which HP1a has adopted its function to different genomic locations and gene types. Different binding mechanisms to the promoter vs. the exon of genes allows HP1a to adopt opposite functions; at the promoter, HP1a binding opens up the chromatin structure and stimulates gene expression, whereas the binding to exons condense the chromatin and thus, represses expression. This also causes long genes to be more bound and repressed by HP1a. Moreover, I show that buffering of monosomic regions is a weak but significant response to loss of chromosomal copy numbers, and that this is mediated via a general mechanism which mainly acts on differentially expressed genes, where the effect becomes stronger for long genes. I also show that POF is the factor which compensates for copy number loss of chromosome 4.
6

Régulation épigénétique de la programmation des lymphocytes T CD4 par SETDB1 / Epigenetic regulation of CD4 T cell programmation by SETDB1

Binet, Bénédicte 23 October 2017 (has links)
Chez les mammifères, les lymphocytes T CD4 sont essentiels à la défense de l’organisme contre des infections par des pathogènes ou le développement de tumeurs. Après activation, les lymphocytes T CD4 naïfs ont la capacité de se différencier en divers lymphocytes T helper (Th1, Th2, Th17…) en fonction des signaux reçus. Le choix du lignage permet d’adapter le phénotype et la fonction des cellules au type de danger détecté. Le processus de différenciation des lymphocytes T helper implique l’établissement de programmes d’expression des gènes distincts. La dynamique et la stabilité de ces programmes sont notamment régulées par l’activité d’éléments cis-régulateurs. Le but de ma thèse était de comprendre les mécanismes épigénétiques qui contrôlent la programmation des lymphocytes T CD4. Dans cet objectif, nous avons étudié le rôle de la H3K9 méthyl-transférase SETDB1 dans la différenciation des lymphocytes T CD4 en Th1 et Th2, deux lignages T helper fortement antagonistes. Nous avons découvert que SETDB1 réprime de manière critique le programme d’expression des gènes Th1. En effet, en l’absence d’expression de Setdb1, la différenciation Th1 est exacerbée. De plus, lorsqu’elles sont exposées à un signal pro-Th1, les cellules Th2 franchissent les barrières de lignage et se transdifférencient en Th1. De manière surprenante, SETDB1 ne cible pas directement les enhancers Th1. Au contraire, l’enzyme dépose de manière type cellulaire spécifique la marque répressive H3K9me3 au niveau d’un set restreint de rétrovirus endogènes (ERVs). Des analyses bio-informatiques ont indiqué que les rétrotransposons ciblés sont fortement associés à des gènes impliqués dans les processus immunitaires. La suite de ces analyses a indiqué que ces ERVs flanquent et répriment l’activité d’éléments cis-régulateurs des gènes Th1, ou agissent eux même comme des enhancers du lignage. En conclusion, la déposition de H3K9me3 par SETDB1 garantit l’intégrité des lymphocytes T helper en réprimant un panel d’ERVs qui ont été exaptés en modules cis-régulateurs pour façonner et contrôler le réseau de gènes Th1. / CD4 T lymphocytes play a central role in the defense of mammal organisms against infections by pathogens and the development of tumors. Upon activation, naïve CD4 T cells differentiate into distinct helper cell subsets depending on environmental cues. T helper cells are key players of the immune system as they finely orchestrate immune responses in a danger-adapted manner. The process of T helper differentiation relies on the establishment of complex and lineage-specific gene expression programs. The dynamics and stability of these programs are regulated at the chromatin level through epigenetic control of cis-regulatory elements. My thesis objective was to investigate the epigenetic pathways involved in the regulation of enhancer activity in CD4 T cells. In this purpose, we studied the role of the H3K9 specific methyltransferase SETDB1 in the differentiation of Th1 and Th2 cells, which are strongly antagonistic. We report that SETDB1 critically represses the Th1 gene expression program. Indeed, Setdb1-deficient naïve T cells show exacerbated Th1 priming. Moreover, when exposed to a Th1-instructive signal, SETDB1-deficient Th2 cells cross lineage boundaries and transdifferentiate into Th1 cells. Surprisingly, SETDB1 does not directly target Th1 enhancers to heterochromatin. Instead, SETDB1 deposits the repressive H3K9me3 mark at a restricted and cell type specific set of endogenous retroviruses, strongly associated with genes involved in immune processes. Further bioinformatic analyses indicated that these retrotransposons flank and repress Th1 gene cis-regulatory elements or behave themselves as Th1 gene enhancers. Thus, H3K9me3 deposition by SETDB1 ensures T cell lineage integrity by repressing a repertoire of ERVs that have been exapted into cis-regulatory modules to shape and control the Th1 gene network.
7

Développement de nucléosides visant l’inhibition de méthyltransférases et synthèse d’une nouvelle famille à visée thérapeutique

Labbé, Marc-Olivier 09 1900 (has links)
Le travail présenté dans cet ouvrage porte sur la synthèse diastéréosélective d’analogues de nucléosides et leurs usages thérapeutiques. L’intérêt pour cette classe de molécules comme agents anti-cancer et/ou antiviraux réside dans l’existence d’acides nucléiques (sous la forme d’ADN ou d’ARN) nécessaires à la reproduction des cellules cancéreuses et la réplication virale. Plusieurs cofacteurs enzymatiques importants possèdent également une structure nucléosidique et occupent des rôles clés dans les processus cellulaires. La première partie concerne le développement d’une sonde chimique pour l’inhibition de protéines méthyltransférases (PMTs). Cette famille d’enzymes assure la méthylation de protéines, soit une modification post-traductionnelle qui a été associée récemment à certaines maladies incluant le cancer. Sur la base de la structure du cofacteur naturel S-adénosyl-L-méthionine (SAM) et d’inhibiteurs émergents, de nouveaux nucléosides fluorés ont été conçus et synthétisés pour potentiellement améliorer l’activité inhibitrice vis-à-vis certaines de ces enzymes. En collaboration avec le SGC de Toronto, les analogues de nucléosides ont été testés biologiquement et certains ont présenté une activité intéressante contre la lysine méthyltransférase SETDB1. La seconde partie, quant à elle, porte sur la synthèse d’une nouvelle famille d’analogues de nucléosides C2'-fluorés comportant un centre quaternaire fonctionnalisé en position C3'. Différentes bases azotées ont été introduites diastéréosélectivement et, plus de vingt analogues de nucléosides et pronucléotides ont été préparés. Une collaboration avec le laboratoire de la Pre Mona Nemer à l’Université d’Ottawa a permis de les tester in vitro sur des lignées cellulaires cancéreuses du pancréas, où certains montrent une activité biologique intéressante. / The work presented in this manuscript describes the diastereoselective synthesis of nucleoside analogues and their therapeutic uses. The interest in this important class of molecules as anticancer and/or antiviral agents stems from the administration of modified nucleosides that interfere with cell division and viral replication through incorporation into DNA and RNA and/or inhibition of essential enzymes. These analogues thus compete with their natural counterparts to inhibit the synthesis of nucleotides which is the limiting process in cell proliferation. The first objective of this thesis is the development of a chemical probe with inhibitory properties against protein methyltransferases (PMTs). This enzyme family is responsible for protein methylation, a post-translational modification recently linked to cancer and other diseases. Based on the structure of the natural cofactor, S-adenosyl-L-methionine (SAM), novel fluorinated nucleoside analogues were synthesized in an effort to further improve biological activity. In collaboration with the SGC in Toronto, two of these compounds showed interesting activity toward the lysine methyltransferase SETDB1. The second part of this thesis describes the synthesis of a new family of nucleoside analogues bearing a C2' fluorine and a novel all-carbon quaternary center at C3'. Generation of these molecules required optimization of the glycosylation reaction to incorporate various nucleobases as well as modifications to the substituents on the sugar backbone. This resulted in the synthesis of more than twenty analogues including pronucleotides. The biological activity of these molecules was determined in collaboration with Pre Mona Nemer’s laboratory at the University of Ottawa. Such nucleoside analogues have shown interesting activity against pancreatic cancer cell lines.

Page generated in 0.0143 seconds