• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation fonctionnelle de JMJ24, une déméthylase d’histone de la famille JUMONJI, chez Arabidopsis thaliana / Functional characterization of JMJ24, a histone demethylase of the JUMONJI family, in Arabidopsis thaliana

Audonnet, Laure 26 February 2014 (has links)
Cette dernière décennie a vu augmenter le nombre d’études portant sur la caractérisation des protéines JUMONJI (JMJ) et montrant leur rôle prépondérant dans la régulation des gènes et le développement des organismes. Ces protéines sont capables de déméthyler certains résidus des queues des histones et ont été organisées en groupes phylogénétiques en fonction de la conservation de leur domaine catalytique. Pour chaque clade entre un et trois substrats spécifiques ont pu être identifiés. De la sous famille KDM3, dont le résidu cible est H3K9, seul un membre, IBM1, a été caractérisé chez Arabidopsis. Cette étude montre que la mutation de JMJ24, un autre membre de ce groupe, entraine une augmentation de la taille des racines, cotylédons et organes floraux, suggérant un rôle dans le contrôle du développement à différents stades. De plus, l’analyse de l’expression tissulaire indique que JMJ24 est exprimé dans le phloème, en cohérence avec l’effet pléiotropique de sa mutation. Enfin, nos données suggèrent une interaction entre JMJ24 et d’autres protéines JMJ, telles JMJ14 et IBM1, mais aussi une interaction avec les protéines DCL, impliquées dans la régulation des gènes et des éléments transposables. / Numerous studies over the last decade have reported the characterization of the JUMONJI (JMJ) proteins, showing their critical importance in regulating genes and organism’s development. These proteins are able to demethylate a subset of histone tail residues and were clustered into distinct groups using a phylogenetic analysis based on their catalytic domain conservation. Furthermore, modification of one to three specific residues has been attributed to each JMJ group. Within the KDM3 subfamily, of which target is the H3K9 residue, only one member, IBM1, was first characterized in Arabidopsis. In this report, we showed that the mutation of JMJ24, another member of this subfamily, resulted in an increase of the root length, cotyledon and floral organ size, suggesting that JMJ24 functions is needed at different developmental stage. In addition, the analysis of the tissue-specific expression of JMJ24 indicated that the gene is expressed within the phloem of all organs, correlating with the pleiotropic effect of the gene mutation. Last, our data also suggested that JMJ24 interacts with other JMJ protein like JMJ14 and IBM1, but also with the DCL proteins knowing to be involved in genes and transposable elements regulation.
2

Epigenetic profiling of the developing zebrafish embryo, and technical developments towards cloning zebrafish and isolating pluripotent stem cells

Thakrar, Sanjay January 2009 (has links)
In normal embryonic development, cells generated from a fertilised oocyte lose their pluripotent status and become restricted to a particular differentiation pathway. This production of functionally distinct cell lineages is thought to be mediated by epigenetic processes that help control gene expression both temporally and spatially without any changes to the DNA sequence. These epigenetic changes consist of posttranslational modifications of the N-terminal tails of histones and differential DNA methylation. Together these act by altering local chromatin structure, which in turn directs gene transcription by regulating the accessibility of the underlying DNA. To examine the potential developmental roles of these modifications, we determined the global cellular patterns of DNA methylation, as well as histone H3 lysine 9 (H3K9) and histone H4 lysine 20 (H4K20) methylation in the developing zebrafish embryo. These modifications are seen as hallmarks of heterochromatin, which consists of DNA that is tightly packaged, gene-poor and transcriptionally silent. Thus using immunostaining techniques, we confirmed the occurrence of genome-wide DNA methylation changes during zebrafish embryogenesis, as well as observing the unique localisation of this mark around the nuclear periphery in conjunction with pericentric heterochromatin. For mono-, di- and tri-methylated H3K9, it was observed by both immunostaining and immunoblotting that these marks became apparent after the onset of zygotic transcription. Ultimately their levels increased as development progressed, in a fashion similar to that of DNA methylation, consistent with a link between these epigenetic marks. Using the same methodology, the three methylation states of H4K20 were seen to vary differentially during zebrafish development, where in particular the levels of H4K20me1 decreased in concert with a potentially sumoylated form. In contrast, the levels of H4K20me2 increased progressively during embryogenesis, while those of H4K20me3 decreased rapidly after the mid-blastula transition. Together, these findings demonstrate that both DNA and histone lysine methylation take place in a highly dynamic manner, further supporting their roles in augmenting chromatin structure and directing cellular differentiation, while also providing a valuable comparison to the developmental epigenetics of other model organisms characterised to date. Preparatory work for somatic cell nuclear transfer in zebrafish was also undertaken. In future studies, the dynamics of these marks could be compared with those of cloned embryos, so that the specific epigenetic profiles necessary for development can be elucidated. Epigenetically, a homologous process occurs within pluripotent embryonic stem cells (ESCs), which can differentiate into any cell type or undergo indefinite self-renewal. Advantageously, we were able to derive zebrafish ESC-like clusters which were morphologically similar to those derived from mice. These clusters were alkaline phosphatase-positive and expressed key ESC markers as detected by RT-PCR and immunofluorescence. In pilot studies, GFP-expressing ESC-like clusters have so far also contributed to ectodermal tissues when transplanted into wild type zebrafish embryos. Subsequently, these ESC-like clusters were epigenetically profiled using immunofluorescence, which showed that they had a similar complement of modifications to ESCs derived from mice. The derivation and initial characterisation of these ESC-like clusters from zebrafish, in addition to the development of somatic cell nuclear transfer in this species, will help pave the way for future studies involving tissue repair and regeneration, as well as opening up the potential of targeted genetic manipulation in this valuable model organism.
3

Dissection of the Mechanisms Controlling H3K9me3 and DNA Methylation in Neurospora crassa

Gessaman, Jordan 10 April 2018 (has links)
Trimethylation of histone H3 lysine 9 (H3K9me3) and DNA methylation mark heterochromatin, contributing to gene silencing and normal cellular functions. My research investigated the control of H3K9me3 and DNA methylation in the filamentous fungus Neurospora crassa. The H3K9 methyltransferase complex, DCDC, consists of DIM-5, DIM-7, DIM-9, DDB1, and CUL4. Each component of DCDC is required for H3K9me3. The DIM-9/DDB1/CUL4 subunits are reminiscent of known cullin E3 ubiquitin ligases. I showed that core features of CUL4-based E3 ubiquitin ligases are not required for H3K9me3 and DNA methylation in Neurospora. H3K9me3 is bound by heterochromatin protein 1 (HP1) to recruit the DIM-2 DNA methyltransferase and the HCHC histone deacetylase complex. HCHC consists of HP1, CDP-2, HDA-1, and CHAP. Both HP1 and CDP-2 harbor conserved chromodomains that bind H3K9me3, and CHAP contains two putative AT-hook domains that bind A:T-rich DNA. To test the contributions of these domains to HCHC function, I deleted the chromodomains of HP1 and CDP-2. Deletion of the HP1 chromodomain resulted in a reduction of DNA methylation, which was not exacerbated by deletion of the CDP-2 chromodomain. A strain with deletions of chap and the HP1 chromodomain showed a DNA methylation phenotype comparable to the loss of the HDA-1 catalytic subunit. These findings support a model in which recognition of H3K9me3 and A:T-rich DNA by HP1 and CHAP, respectively, are required for proper HCHC function. To examine the relationships between H3K9me3, DNA methylation, and histone acetylation, I utilized in vivo protein tethering of core heterochromatin components. The requirement of DIM-7 for native heterochromatin, previously implicated in localizing the H3K9 methyltransferase DIM-5, was not bypassed by DIM-5 tethering, indicating that DIM-7 has additional roles within the DCDC. Artificial localization of the HCHC histone deacetylase, by tethering HP1 or HDA-1, resulted in induction of H3K9me3, DNA methylation, and gene silencing, but silencing did not require H3K9me3 or DNA methylation. HCHC-mediated establishment of H3K9me3 was not required for de novo heterochromatin formation at native heterochromatic loci suggesting a role in heterochromatin spreading. Together, this work implicates HDA-1 activity as a key driver of heterochromatin spreading and silencing. This dissertation includes previously published co-authored material.
4

Rôle d'histones methyltransférases spécifiques de H3K9 dans l'équilibre prolifération et différenciation cellulaire / Role of specific histones methyltransferases of H3K9 in the balance between cell proliferation and differenciation

Battisti, Valentine 10 December 2013 (has links)
Chez les eucaryotes, l’expression des gènes dépend en partie du degré de compaction de la chromatine. La structure chromatinienne est régulée par des marques dites épigénétiques,telles que les modifications post-traductionnelles des protéines structurelles de la chromatine, les histones. Ainsi, la méthylation de la lysine 9 de l’histone H3 (H3K9) sur le promoteur des gènes est essentiellement associée à la répression de la transcription. H3K9 est méthylée par différentes enzymes appelées lysine méthyltransférases (KMTs). L’objectif principal de mon projet de thèse a été de mieux comprendre le rôle de principales KMTs de H3K9, que sontG9a, GLP, Suv39h1 et SETDB1, dans la régulation de l’équilibre entre prolifération et différenciation terminale. Pour cela, j’ai utilisé le modèle de différenciation terminale de cellules du muscle squelettique. En effet, durant la différenciation terminale, les myoblastes arrêtent de proliférer et fusionnent entre eux pour former de longues cellules multi nucléées que sont les myotubes. Ce processus implique, d’une part, l’expression des gènes de différenciation musculaire et, d’autre part, la répression irréversible des gènes associés à la prolifération cellulaire. L’introduction bibliographique de ce travail de thèse est séparée en trois chapitres. Le premier chapitre porte sur la chromatine et ses modifications post-traductionnelles. Le second s’attache à décrire les rôles de la méthylation de H3K9 et, en particulier, des quatre KMTs sur lesquelles j’ai travaillé durant ma thèse : G9a, GLP, SETDB1 et Suv39h1. Dans le troisième chapitre, je présente le modèle de la différenciation terminale du muscle squelettique. Dans la partie "Résultats", je décris deux des principales études que j’ai menées durant ma thèse. La première porte sur les rôles antagonistes de G9a et GLP. La seconde porte sur le rôle de SETDB1 durant la différenciation musculaire. Les résultats que j’ai obtenus sont discutés dans cette partie. Je conclus ce manuscrit en discutant mes résultats de manière plus générale et en proposant des perspectives à long terme. Enfin, une annexe présentera les autres articles de recherche auxquels j’ai participé pendant ma thèse. / In eukaryotes, gene expression partly relies on chromatin compaction degree. Chromatin status is controlled by epigenetic marks, such as histones (chromatin structural proteins) posttranslational modifications. As an example, histone H3 lysine 9 (H3K9) methylation on gene promoters is mainly associated with transcriptional repression. H3K9 is methylated by several enzymes called lysine methyltransferases (KMTs). The aim of my thesis project was to understand the role of the H3K9 KMTs, G9a, GLP, Suv39h1 and SETDB1 in regulating the balance between proliferation and terminal differentiation. For this purpose, I used skeletal muscle terminal differentiation as model. Upon muscle terminal differentiation, myoblasts exit, in an irreversible way, from the cell cycle and under go differentiation where cells fusion and form myotubes. During this process, cell cycle genes are permanently silenced and muscle specific genes are activated. Thesis introduction is divided into three chapters. The first chapter focuses on chromatin and post-translational modifications. The second chapter describes H3K9 methylation characteristics and the role of the four KMTs that I studied during my thesis project: G9a,GLP, Suv39h1 and SETDB1. In the third chapter, the skeletal muscle terminal differentiation model is described in details. Results section reports my two major studies outcomes and their discussion. The first concerns the antagonistic roles of G9a and GLP regarding the muscle terminal differentiation and the second focuses on the role of SETDB1 during muscle differentiation. Finally, I conclude this manuscript by a plainer discussion followed by long term perspectives and an appendix presents other research articles, in which I collaborated during my PhD.
5

Epigenetic regulation of heterochromatin structure and tumour progression

Bruton, Peter Christopher January 2018 (has links)
Since the discovery of DNA packaging into chromatin, and McClintock's (1951) work on position-effect variegation providing evidence of non-mendelian inheritance, the principal of a genome maintaining 'on' and 'off' states has been widely adopted. However, the underlying mechanisms that regulate these dynamic chromatin states and their effect on disease are still poorly understood. DNA methylation and histone trimethylation at H3K9 and H4K20 are the core hallmarks of the heterochromatic constitutively 'off' state. Constitutive heterochromatin is predominantly comprised of repetitive satellite containing pericentromeric regions and telomeres and in mouse heterochromatin clusters into large chromocenters. These regions are cytologically more compact and generally transcriptionally silent across embryonic and differentiated mouse cell types. However, in addition to increased genomic instability, mouse tumour cells sustain increased satellite expression suggesting constitutive heterochromatin is disrupted. Therefore how constitutive heterochromatin is maintained has important implications for genome regulation and disease, and remains poorly understood. While satellite DNA sequences are not evolutionarily conserved, pericentromeric and telomeric heterochromatin occurs across species. Heterochromatin formation is therefore independent of the underlying DNA sequence, supporting the hypothesis that epigenetic components can regulate chromatin structure. DNA methylation is generally thought to be associated with transcriptional silencing and chromatin compaction. However, Gilbert et al (2007) showed that the complete loss of DNA methylation did not affect the compaction at heterochromatin or global genome compaction. The role of H3K9me3 in regulating heterochromatin has also been an area of keen interest. H3K9me3 patterns are established by suppressor of variegation 3-9 homologues and provide the binding site for heterochromatic protein 1 [HP1] which can in turn recruit Suv39h1. This Suv3-9h-HP1-H3K9 axis enables its propagation throughout heterochromatin. Peters et al (2001) demonstrated that in mice loss of suv39 homologues 1 and 2 caused a loss of H3K9me3 at constitutive heterochromatic domains. These Suv39h null mice demonstrated decreased genome stability, and an increased prevalence of oncogenesis. However cytological chromocenters are still present in the absence of H3K9me3. Therefore the function of H3K9me3 as a causative agent in heterochromatin formation is still debated. Broadly the aim was to investigate the phenotypic role of heterochromatic epigenetic components in cancer progression, and address whether H3K9me3 effects large scale chromatin structure. To identify heterochromatic gene silencing components, an inhibitor screen was performed in an artificial silenced reporter system. The reporter fluorophore was silenced by the presence of centromeric arrays from yeast/bacterial artificial chromosomes and human alpha satellite repeats enriched for H3K9me3. To address the function of the de-silencing components identified in cancer, the fitness of colon cancer cells [HCT116] was investigated before and after the development of resistance to the MEK inhibitor trametinib. The most intriguing result was that BET protein inhibition resulted in derepression of the reporter construct and trametinib resistant HCT116 cells were more sensitive to BET inhibitors, while subsequent investigation showed HP1 protein levels were altered. Analysis of publically available datasets of tumour drug resistance, showed elevated BET protein binding at HP1 promoters in resistant cell lines suggesting an indirect role in gene silencing. To investigate the consequence of H3K9me3 loss on chromatin structure, mouse embryonic stem cells that lacked both Suv39 homologues were used. Microccocal nuclease digestion and sucrose sedimentation demonstrated a global decompaction of large-scale chromatin fibres whilst re-expression of suv39h1 rescued H3K9me3 at chromocenters and global chromatin decompaction. Loss of Suv39h also increased chromatin associated RNA levels that were also rescued by Suv39h1 re-expression. This suggests that H3K9me3 has a role chromatin fibre compaction globally as well as at constitutive heterochromatin, potentially mediated by chromatin associated RNA. To conclude, multiple components were identified that are involved in transcriptional silencing. Evaluating their function in tumour progression demonstrated a possible role of BET proteins in the development of MEKi resistance that may be mediated through HP1 proteins. H3K9me3 and its binding partner HP1 affect global chromatin compaction. The global decompaction after Suv39h loss correlates with an increase in chromatin associated RNA, suggesting a possible mechanism for changes in chromatin compaction beyond H3K9me3.
6

Caractérisation fonctionnelle de JMJ24, une déméthylase d'histone de la famille JUMONJI, chez Arabidopsis thaliana

Audonnet, Laure 26 February 2014 (has links) (PDF)
Cette dernière décennie a vu augmenter le nombre d'études portant sur la caractérisation des protéines JUMONJI (JMJ) et montrant leur rôle prépondérant dans la régulation des gènes et le développement des organismes. Ces protéines sont capables de déméthyler certains résidus des queues des histones et ont été organisées en groupes phylogénétiques en fonction de la conservation de leur domaine catalytique. Pour chaque clade entre un et trois substrats spécifiques ont pu être identifiés. De la sous famille KDM3, dont le résidu cible est H3K9, seul un membre, IBM1, a été caractérisé chez Arabidopsis. Cette étude montre que la mutation de JMJ24, un autre membre de ce groupe, entraine une augmentation de la taille des racines, cotylédons et organes floraux, suggérant un rôle dans le contrôle du développement à différents stades. De plus, l'analyse de l'expression tissulaire indique que JMJ24 est exprimé dans le phloème, en cohérence avec l'effet pléiotropique de sa mutation. Enfin, nos données suggèrent une interaction entre JMJ24 et d'autres protéines JMJ, telles JMJ14 et IBM1, mais aussi une interaction avec les protéines DCL, impliquées dans la régulation des gènes et des éléments transposables.
7

Molekulare und funktionelle Analyse von Windei (CG12340) als Bindungspartner der Histonmethyltransferase Eggless während der Oogenese von <i>Drosophila</i> / Molecular and functional analysis of Windei (Wde) as binding partner of the histone methyltransferase Eggless during the oogenesis of <i>Drosophila</i>

Koch, Carmen 20 January 2009 (has links)
No description available.

Page generated in 0.1036 seconds